本文整理匯總了Python中fairseq.utils.move_to_cuda方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.move_to_cuda方法的具體用法?Python utils.move_to_cuda怎麽用?Python utils.move_to_cuda使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類fairseq.utils
的用法示例。
在下文中一共展示了utils.move_to_cuda方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _prepare_sample
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def _prepare_sample(self, sample):
if sample == "DUMMY":
raise Exception(
"Trying to use an uninitialized 'dummy' batch. This usually indicates "
"that the total number of batches is smaller than the number of "
"participating GPUs. Try reducing the batch size or using fewer GPUs."
)
if sample is None or len(sample) == 0:
return None
if self.cuda:
sample = utils.move_to_cuda(sample)
def apply_half(t):
if t.dtype is torch.float32:
return t.half()
return t
if self.args.fp16:
sample = utils.apply_to_sample(apply_half, sample)
return sample
示例2: _prepare_sample
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def _prepare_sample(self, sample):
if sample is None or len(sample) == 0:
return None
return utils.move_to_cuda(sample)
示例3: generate_batched_itr
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def generate_batched_itr(
self, data_itr, beam_size=None, maxlen_a=0.0, maxlen_b=None,
cuda=False, timer=None, prefix_size=0,
):
"""Iterate over a batched dataset and yield individual translations.
Args:
maxlen_a/b: generate sequences of maximum length ax + b,
where x is the source sentence length.
cuda: use GPU for generation
timer: StopwatchMeter for timing generations.
"""
if maxlen_b is None:
maxlen_b = self.maxlen
for sample in data_itr:
s = utils.move_to_cuda(sample) if cuda else sample
if 'net_input' not in s:
continue
input = s['net_input']
srclen = input['src_tokens'].size(1)
if timer is not None:
timer.start()
with torch.no_grad():
hypos = self.generate(
input['src_tokens'],
input['src_lengths'],
beam_size=beam_size,
maxlen=int(maxlen_a*srclen + maxlen_b),
prefix_tokens=s['target'][:, :prefix_size] if prefix_size > 0 else None,
)
if timer is not None:
timer.stop(sum(len(h[0]['tokens']) for h in hypos))
for i, id in enumerate(s['id'].data):
# remove padding
src = utils.strip_pad(input['src_tokens'].data[i, :], self.pad)
ref = utils.strip_pad(s['target'].data[i, :], self.pad) if s['target'] is not None else None
yield id, src, ref, hypos[i]
示例4: score_batched_itr
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def score_batched_itr(self, data_itr, cuda=False, timer=None):
"""Iterate over a batched dataset and yield scored translations."""
for sample in data_itr:
s = utils.move_to_cuda(sample) if cuda else sample
if timer is not None:
timer.start()
pos_scores, attn = self.score(s)
for i, id in enumerate(s['id'].data):
# remove padding from ref
src = utils.strip_pad(s['net_input']['src_tokens'].data[i, :], self.pad)
ref = utils.strip_pad(s['target'].data[i, :], self.pad) if s['target'] is not None else None
tgt_len = ref.numel()
pos_scores_i = pos_scores[i][:tgt_len]
score_i = pos_scores_i.sum() / tgt_len
if attn is not None:
attn_i = attn[i]
_, alignment = attn_i.max(dim=0)
else:
attn_i = alignment = None
hypos = [{
'tokens': ref,
'score': score_i,
'attention': attn_i,
'alignment': alignment,
'positional_scores': pos_scores_i,
}]
if timer is not None:
timer.stop(s['ntokens'])
# return results in the same format as SequenceGenerator
yield id, src, ref, hypos
示例5: disambiguate_pronoun
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def disambiguate_pronoun(self, model, sentence, use_cuda=False):
sample_json = wsc_utils.convert_sentence_to_json(sentence)
dataset = self.build_dataset_for_inference(sample_json)
sample = dataset.collater([dataset[0]])
if use_cuda:
sample = utils.move_to_cuda(sample)
def get_masked_input(tokens, mask):
masked_tokens = tokens.clone()
masked_tokens[mask.bool()] = self.mask
return masked_tokens
def get_lprobs(tokens, mask):
logits, _ = model(src_tokens=get_masked_input(tokens, mask))
lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float)
scores = lprobs.gather(2, tokens.unsqueeze(-1)).squeeze(-1)
mask = mask.type_as(scores)
scores = (scores * mask).sum(dim=-1) / mask.sum(dim=-1)
return scores
cand_lprobs = get_lprobs(
sample['candidate_tokens'][0],
sample['candidate_masks'][0],
)
if sample['query_tokens'][0] is not None:
query_lprobs = get_lprobs(
sample['query_tokens'][0].unsqueeze(0),
sample['query_masks'][0].unsqueeze(0),
)
return (query_lprobs >= cand_lprobs).all().item() == 1
else:
best_idx = cand_lprobs.argmax().item()
full_cand = sample['candidate_tokens'][0][best_idx]
mask = sample['candidate_masks'][0][best_idx]
toks = full_cand[mask.bool()]
return self.bpe.decode(self.source_dictionary.string(toks)).strip()
示例6: _prepare_sample
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def _prepare_sample(self, sample):
if sample == "DUMMY":
raise Exception(
"Trying to use an uninitialized 'dummy' batch. This usually indicates "
"that the total number of batches is smaller than the number of "
"participating GPUs. Try reducing the batch size or using fewer GPUs."
)
if sample is None or len(sample) == 0:
return None
if self.cuda:
sample = utils.move_to_cuda(sample)
def apply_half(t):
if t.dtype is torch.float32:
return t.half()
return t
def apply_bfloat16(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.bfloat16)
return t
if self.args.fp16:
sample = utils.apply_to_sample(apply_half, sample)
if self.args.bf16:
sample = utils.apply_to_sample(apply_bfloat16, sample)
return sample
示例7: backtranslate_samples
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def backtranslate_samples(samples, collate_fn, generate_fn, cuda=True):
"""Backtranslate a list of samples.
Given an input (*samples*) of the form:
[{'id': 1, 'source': 'hallo welt'}]
this will return:
[{'id': 1, 'source': 'hello world', 'target': 'hallo welt'}]
Args:
samples (List[dict]): samples to backtranslate. Individual samples are
expected to have a 'source' key, which will become the 'target'
after backtranslation.
collate_fn (callable): function to collate samples into a mini-batch
generate_fn (callable): function to generate backtranslations
cuda (bool): use GPU for generation (default: ``True``)
Returns:
List[dict]: an updated list of samples with a backtranslated source
"""
collated_samples = collate_fn(samples)
s = utils.move_to_cuda(collated_samples) if cuda else collated_samples
generated_sources = generate_fn(s)
id_to_src = {
sample['id']: sample['source'] for sample in samples
}
# Go through each tgt sentence in batch and its corresponding best
# generated hypothesis and create a backtranslation data pair
# {id: id, source: generated backtranslation, target: original tgt}
return [
{'id': id.item(), 'target': id_to_src[id.item()], 'source': hypos[0]['tokens'].cpu()}
for id, hypos in zip(collated_samples['id'], generated_sources)
]
示例8: generate_batched_itr
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def generate_batched_itr(self, data_itr, beam_size=None, cuda=False, timer=None):
"""Iterate over a batched dataset and yield individual translations.
Args:
cuda (bool, optional): use GPU for generation
timer (StopwatchMeter, optional): time generations
"""
for sample in data_itr:
s = utils.move_to_cuda(sample) if cuda else sample
if "net_input" not in s:
continue
input = s["net_input"]
# model.forward normally channels prev_output_tokens into the decoder
# separately, but SequenceGenerator directly calls model.encoder
encoder_input = {
k: v for k, v in input.items() if k != "prev_output_tokens"
}
if timer is not None:
timer.start()
with torch.no_grad():
hypos = self.generate(encoder_input)
if timer is not None:
timer.stop(sum(len(h[0]["tokens"]) for h in hypos))
for i, id in enumerate(s["id"].data):
# remove padding
src = utils.strip_pad(input["src_tokens"].data[i, :], self.pad)
ref = (
utils.strip_pad(s["target"].data[i, :], self.pad)
if s["target"] is not None
else None
)
yield id, src, ref, hypos[i]
示例9: _generate_translation
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def _generate_translation(self, model, tgt_dict, sample, beam_size, **kwargs):
translator_class = beam_decode.SequenceGenerator
translator = translator_class(models=[model], tgt_dict=tgt_dict, **kwargs)
translator.cuda()
s = utils.move_to_cuda(sample)
# TODO: nbest
input = s["net_input"]
srclen = input["src_tokens"].size(1)
if self.task.use_char_source:
encoder_input = {
k: v
for k, v in input.items()
if k in ["src_tokens", "src_lengths", "char_inds", "word_lengths"]
}
else:
encoder_input = {
k: v for k, v in input.items() if k in ["src_tokens", "src_lengths"]
}
with torch.no_grad():
hypos = translator.generate(
encoder_input=encoder_input,
beam_size=beam_size,
maxlen=int(self.args.max_len_a * srclen + self.args.max_len_b),
)
for i, id in enumerate(s["id"]):
# remove padding
src = utils.strip_pad(input["src_tokens"][i, :], tgt_dict.pad())
yield id, src, hypos[i]
示例10: _prepare_sample
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def _prepare_sample(self, sample):
if sample is None or len(sample) == 0:
return None
if self.cuda:
sample = utils.move_to_cuda(sample)
return sample
示例11: backtranslate_samples
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def backtranslate_samples(samples, collate_fn, generate_fn, cuda=True):
"""Backtranslate a list of samples.
Given an input (*samples*) of the form:
[{'id': 1, 'source': 'hallo welt'}]
this will return:
[{'id': 1, 'source': 'hello world', 'target': 'hallo welt'}]
Args:
samples (List[dict]): samples to backtranslate. Individual samples are
expected to have a 'source' key, which will become the 'target'
after backtranslation.
collate_fn (callable): function to collate samples into a mini-batch
generate_fn (callable): function to generate backtranslations
cuda (bool): use GPU for generation (default: ``True``)
Returns:
List[dict]: an updated list of samples with a backtranslated source
"""
collated_samples = collate_fn(samples)
s = utils.move_to_cuda(collated_samples) if cuda else collated_samples
generated_sources = generate_fn(s['net_input'])
def update_sample(sample, generated_source):
sample['target'] = sample['source'] # the original source becomes the target
sample['source'] = generated_source
return sample
# Go through each tgt sentence in batch and its corresponding best
# generated hypothesis and create a backtranslation data pair
# {id: id, source: generated backtranslation, target: original tgt}
return [
update_sample(
sample=input_sample,
generated_source=hypos[0]['tokens'].cpu(), # highest scoring hypo is first
)
for input_sample, hypos in zip(samples, generated_sources)
]
示例12: generate_batched_itr
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def generate_batched_itr(
self,
data_itr,
beam_size=None,
maxlen_a=0.0,
maxlen_b=None,
cuda=False,
timer=None,
prefix_size=0,
):
"""Iterate over a batched dataset and yield individual translations.
Args:
maxlen_a/b: generate sequences of maximum length ax + b,
where x is the source sentence length.
cuda: use GPU for generation
timer: StopwatchMeter for timing generations.
"""
if maxlen_b is None:
maxlen_b = self.maxlen
for sample in data_itr:
if cuda:
s = utils.move_to_cuda(sample)
input = s["net_input"]
# Take the max source length to compute the max target length
srclen = input["src_tokens"].size(1)
# FIXME: handle characters properly
if self.use_char_source:
raise ValueError(
"Character level encoder is not supported yet for "
"multisource sentences."
)
encoder_inputs = (input["src_tokens"], input["src_lengths"])
if timer is not None:
timer.start()
with torch.no_grad():
hypos = self.generate(
encoder_inputs,
srcs_ids=input["src_ids"],
beam_size=beam_size,
maxlen=int(maxlen_a * srclen + maxlen_b),
prefix_tokens=s["target"][:, :prefix_size]
if prefix_size > 0
else None,
)
if timer is not None:
timer.stop(s["ntokens"])
for i, id in enumerate(s["id"]):
src = input["src_tokens"].index_select(
0, input["src_ids"][self.align_to]
)
# remove padding from ref
ref = utils.strip_pad(s["target"][i, :], self.pad)
yield id, src, ref, hypos[i]
示例13: test_collect_top_k_probs
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def test_collect_top_k_probs(self):
test_args = test_utils.ModelParamsDict(arch="hybrid_transformer_rnn")
_, src_dict, tgt_dict = test_utils.prepare_inputs(test_args)
self.task = tasks.DictionaryHolderTask(src_dict, tgt_dict)
model = self.task.build_model(test_args)
use_cuda = torch.cuda.is_available()
if use_cuda:
model.cuda()
model.eval()
binarized_source = test_utils.create_dummy_binarized_dataset()
binarized_target = test_utils.create_dummy_binarized_dataset(append_eos=True)
dataset = language_pair_dataset.LanguagePairDataset(
src=binarized_source,
src_sizes=binarized_source.sizes,
src_dict=self.task.src_dict,
tgt=binarized_target,
tgt_sizes=binarized_target.sizes,
tgt_dict=self.task.dst_dict,
left_pad_source=False,
)
top_k_scores, top_k_indices = collect_top_k_probs.compute_top_k(
task=self.task,
models=[model],
dataset=dataset,
k=3,
use_cuda=use_cuda,
max_tokens=None,
max_sentences=None,
progress_bar_args=None,
)
batch = language_pair_dataset.collate(
[dataset[0]],
pad_idx=self.task.src_dict.pad(),
eos_idx=self.task.src_dict.eos(),
left_pad_source=False,
)
sample = batch["net_input"]
if use_cuda:
sample = utils.move_to_cuda(sample)
with torch.no_grad():
net_output = model(**sample)
probs = model.get_normalized_probs(net_output, log_probs=False)
top_probs, top_indices = torch.topk(probs[0, 0], k=3)
if use_cuda:
top_probs = top_probs.cpu()
top_indices = top_indices.cpu()
np.testing.assert_array_equal(top_k_indices[0], top_indices.numpy())
normalized_probs = (top_probs / top_probs.sum()).numpy()
np.testing.assert_almost_equal(top_k_scores[0], normalized_probs)
示例14: generate_batched_itr
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def generate_batched_itr(
self,
data_itr,
beam_size=None,
maxlen_a=0.0,
maxlen_b=None,
cuda=False,
timer=None,
prefix_size=0,
):
"""Iterate over a batched dataset and yield individual translations.
Args:
maxlen_a/b: generate sequences of maximum length ax + b,
where x is the source sentence length.
cuda: use GPU for generation
timer: StopwatchMeter for timing generations.
"""
if maxlen_b is None:
maxlen_b = self.maxlen
for sample in data_itr:
if "net_input" not in sample:
continue
if cuda:
s = utils.move_to_cuda(sample)
else:
s = sample
input = s["net_input"]
srclen = input["src_tokens"].size(1)
if self.use_char_source:
encoder_input = {
k: v
for k, v in input.items()
if k in ["src_tokens", "src_lengths", "char_inds", "word_lengths"]
}
else:
encoder_input = {
k: v for k, v in input.items() if k in ["src_tokens", "src_lengths"]
}
if timer is not None:
timer.start()
with torch.no_grad():
hypos = self.generate(
encoder_input=encoder_input,
beam_size=beam_size,
maxlen=int(maxlen_a * srclen + maxlen_b),
prefix_tokens=s["target"][:, :prefix_size]
if prefix_size > 0
else None,
)
if timer is not None:
timer.stop(s["ntokens"])
for i, id in enumerate(s["id"]):
# remove padding
src = utils.strip_pad(input["src_tokens"][i, :], self.pad)
ref = utils.strip_pad(s["target"][i, :], self.pad)
yield id, src, ref, hypos[i]
示例15: score
# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import move_to_cuda [as 別名]
def score(self, lines):
batch = self.make_batches(lines)
sample_score_dict = {}
# with progress_bar.build_progress_bar(self.args, itr) as t:
for sample in batch:
sample_id_lst = sample['id']
sample = utils.move_to_cuda(sample) if self.use_cuda else sample
if 'net_input' not in sample:
continue
hypos = self.scorer.generate(self.models, sample)
# print(hypos)
for sample_id, hypos_i in zip(sample_id_lst, hypos):
hypo = hypos_i[0]
pos_scores = hypo['positional_scores']
inf_scores = pos_scores.eq(float('inf')) | pos_scores.eq(float('-inf'))
if inf_scores.any():
print('| Skipping tokens with inf scores:',
self.task.target_dictionary.string(hypo['tokens'][inf_scores.nonzero()]))
pos_scores = pos_scores[(~inf_scores).nonzero()]
sample_score = pos_scores.sum().cpu()
count = pos_scores.numel()
w_lst = []
word_prob = []
for i in range(len(hypo['tokens'])):
w_ind = hypo['tokens'][i].item()
w = self.task.dictionary[w_ind]
word_prob.append((w, pos_scores[i].item()))
w_lst.append(w)
sample_score = -sample_score / count
if not self.args.quiet:
if self.args.output_sent:
print('H-{}\t{}\t{}'.format(sample_id, sample_score, ' '.join(w_lst)))
else:
print('H-{}\t{}'.format(sample_id, sample_score))
sample_score_dict[sample_id.item()] = sample_score.item()
# print(sample_id, sample_score.item())
return sample_score_dict