當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.item方法代碼示例

本文整理匯總了Python中fairseq.utils.item方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.item方法的具體用法?Python utils.item怎麽用?Python utils.item使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在fairseq.utils的用法示例。


在下文中一共展示了utils.item方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def forward(self, model, sample, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(**sample['net_input'])
        lprobs = model.get_normalized_probs(net_output, log_probs=True)
        lprobs = lprobs.view(-1, lprobs.size(-1))
        target = model.get_targets(sample, net_output).view(-1)
        loss = F.nll_loss(lprobs, target, size_average=False, ignore_index=self.padding_idx,
                          reduce=reduce)
        sample_size = sample['target'].size(0) if self.args.sentence_avg else sample['ntokens']
        logging_output = {
            'loss': utils.item(loss.data) if reduce else loss.data,
            'ntokens': sample['ntokens'],
            'sample_size': sample_size,
        }
        return loss, sample_size, logging_output 
開發者ID:nusnlp,項目名稱:crosentgec,代碼行數:23,代碼來源:cross_entropy.py

示例2: get_logging_output

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def get_logging_output(self, sample, target, lprobs, loss):
        target = target.view(-1)
        mask = target != self.padding_idx
        correct = torch.sum(
            lprobs.argmax(1).masked_select(mask) == target.masked_select(mask)
        )
        total = torch.sum(mask)
        sample_size = (
            sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
        )

        logging_output = {
            "loss": utils.item(loss.data),  # * sample['ntokens'],
            "ntokens": sample["ntokens"],
            "nsentences": sample["target"].size(0),
            "sample_size": sample_size,
            "correct": utils.item(correct.data),
            "total": utils.item(total.data),
            "nframes": torch.sum(sample["net_input"]["src_lengths"]).item(),
        }

        return sample_size, logging_output 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:24,代碼來源:cross_entropy_acc.py

示例3: reduce_metrics

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def reduce_metrics(logging_outputs) -> None:
        """Aggregate logging outputs from data parallel training."""
        sample_size = utils.item(sum(log.get("sample_size", 0) for log in logging_outputs))
        loss = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
        nll_loss = utils.item(sum(log.get("nll_loss", 0) for log in logging_outputs))

        metrics.log_scalar('loss', loss / sample_size / math.log(2), sample_size, round=3)
        metrics.log_scalar('nll_loss', nll_loss / sample_size / math.log(2), sample_size, round=3)
        metrics.log_derived('ppl', lambda meters: utils.get_perplexity(meters['loss'].avg))

        for key in logging_outputs[0]:
            if key[-5:] == "-loss":
                val = sum(log.get(key, 0) for log in logging_outputs)
                metrics.log_scalar(
                    key[:-5],
                    val / sample_size / math.log(2) if sample_size > 0 else 0.0,
                    sample_size,
                    round=3,
                ) 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:21,代碼來源:nat_loss.py

示例4: upgrade_state_dict_named

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def upgrade_state_dict_named(self, state_dict, name):
        """Upgrade a (possibly old) state dict for new versions of fairseq."""
        if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
            weights_key = "{}.embed_positions.weights".format(name)
            if weights_key in state_dict:
                print("deleting {0}".format(weights_key))
                del state_dict[weights_key]
            state_dict[
                "{}.embed_positions._float_tensor".format(name)
            ] = torch.FloatTensor(1)
        for i in range(self.num_layers):
            # update layer norms
            self.layers[i].upgrade_state_dict_named(
                state_dict, "{}.layers.{}".format(name, i)
            )

        version_key = "{}.version".format(name)
        if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2:
            # earlier checkpoints did not normalize after the stack of layers
            self.layer_norm = None
            self.normalize = False
            state_dict[version_key] = torch.Tensor([1])
        return state_dict 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:25,代碼來源:transformer.py

示例5: forward

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def forward(self, model, sample, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(**sample['net_input'])
        target = sample['target']

        loss = vocab_parallel_cross_entropy(net_output[0].float(), target)
        loss = (loss * (target != self.padding_idx)).sum()
        sample_size = sample['target'].size(0) if self.sentence_avg else sample['ntokens']
        logging_output = {
            'loss': utils.item(loss.data) if reduce else loss.data,
            'ntokens': sample['ntokens'],
            'nsentences': sample['target'].size(0),
            'sample_size': sample_size,
        }
        return loss, sample_size, logging_output 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:23,代碼來源:vocab_parallel_cross_entropy.py

示例6: forward

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def forward(self, model, sample, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss, as a Variable
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        translations, bleu_scores = self.generate_translations(model, sample)
        nll_loss = self.compute_nll(model, sample, translations)
        loss = nll_loss[:, 0] + torch.logsumexp(-nll_loss, 1)
        if reduce:
            loss = loss.sum()
        sample_size = (
            sample["target"].size(0) if self.args.sentence_avg else sample["ntokens"]
        )
        logging_output = {
            "loss": utils.item(loss.data) if reduce else loss.data,
            "ntokens": sample["ntokens"],
            "nsentences": sample["target"].size(0),
            "sample_size": sample_size,
        }
        return loss, sample_size, logging_output 
開發者ID:pytorch,項目名稱:translate,代碼行數:25,代碼來源:sequence_criterions.py

示例7: update_output

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def update_output(
    args,
    extra_state: Dict[str, Any],
    output_queue: Optional[mp_queues.Queue],
    num_updates: int,
    train_ppl: float,
    wps: Optional[float],
):
    if distributed_utils.is_master(args) and output_queue is not None:
        progress_output: Tuple[int, Dict] = (
            num_updates,
            {
                "train_ppl": train_ppl,
                "tune_loss": utils.item(extra_state["tune_eval"]["loss"]),
                "tune_ppl": extra_state["tune_eval"]["perplexity"],
                "wps": utils.item(wps),
                # translation_samples isn't currently used by the queue reader,
                # so just pass None for now until we start needing it.
                "translation_samples": None,
            },
        )
        output_queue.put_nowait(progress_output)
        extra_state["training_progress"].append(progress_output)

    return extra_state 
開發者ID:pytorch,項目名稱:translate,代碼行數:27,代碼來源:train.py

示例8: forward

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def forward(self, model, sample, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss, as a Variable
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(**sample['net_input'])
        lprobs = model.get_normalized_probs(net_output, log_probs=True)
        lprobs = lprobs.view(-1, lprobs.size(-1))
        target = sample['target'].view(-1)
        loss = F.nll_loss(lprobs, target, size_average=False, ignore_index=self.padding_idx,
                          reduce=reduce)
        sample_size = sample['target'].size(0) if self.args.sentence_avg else sample['ntokens']
        logging_output = {
            'loss': utils.item(loss.data) if reduce else loss.data,
            'ntokens': sample['ntokens'],
            'sample_size': sample_size,
        }
        return loss, sample_size, logging_output 
開發者ID:EdinburghNLP,項目名稱:XSum,代碼行數:23,代碼來源:cross_entropy.py

示例9: forward

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def forward(self, model, sample, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(**sample['net_input'])
        loss, nll_loss, extra_loss = self.compute_loss(model, net_output, sample, reduce=reduce)
        sample_size = sample['target'].size(0) if self.args.sentence_avg else sample['ntokens']
        logging_output = {
            'loss': utils.item(loss.data) if reduce else loss.data,
            'nll_loss': utils.item(nll_loss.data) if reduce else nll_loss.data,
            'qv_loss': utils.item(extra_loss.data),
            'ntokens': sample['ntokens'],
            'nsentences': sample['target'].size(0),
            'sample_size': sample_size,
        }
        return loss, sample_size, logging_output 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:22,代碼來源:qv_cross_entropy.py

示例10: forward

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def forward(self, model, sample, step=-1, epoche=-1, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(**sample['net_input'])
        loss, nll_loss = self.compute_loss_multi(model, net_output, sample, reduce=reduce)

        sample_size = sample['target'].size(0) if self.args.sentence_avg else sample['ntokens']
        logging_output = {
            'loss': utils.item(loss.data) if reduce else loss.data,
            'nll_loss': utils.item(nll_loss.data) if reduce else nll_loss.data,
            'ntokens': sample['ntokens'],
            'nsentences': sample['target'].size(0),
            'sample_size': sample_size,
        }
        return loss, sample_size, logging_output 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:22,代碼來源:multicontextt_cross_entropy.py

示例11: forward

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def forward(self, model, sample, step=-1, epoche=-1, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(**sample['net_input'])
        loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce)
        sample_size = sample['target'].size(0) if self.args.sentence_avg else sample['ntokens']
        logging_output = {
            'loss': utils.item(loss.data) if reduce else loss.data,
            'nll_loss': utils.item(nll_loss.data) if reduce else nll_loss.data,
            'ntokens': sample['ntokens'],
            'nsentences': sample['target'].size(0),
            'sample_size': sample_size,
        }
        return loss, sample_size, logging_output 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:21,代碼來源:pa_grid_cross_entropy.py

示例12: forward

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def forward(self, model, sample, step=-1, epoche=-1, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(**sample['net_input'])
        writing_loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce)
        align_loss = self.compute_alignment_loss(net_output, sample)
        loss = writing_loss + self.alpha * align_loss
        sample_size = sample['target'].size(0) if self.args.sentence_avg else sample['ntokens']
        logging_output = {
            'loss': utils.item(loss.data) if reduce else loss.data,
            'writing_loss': utils.item(writing_loss.data) if reduce else writing_loss.data,
            'regul_loss': utils.item(align_loss.data) if reduce else align_loss.data,
            'nll_loss': utils.item(nll_loss.data) if reduce else nll_loss.data,
            'ntokens': sample['ntokens'],
            'nsentences': sample['target'].size(0),
            'sample_size': sample_size,
        }
        return loss, sample_size, logging_output 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:25,代碼來源:align_label_smoothed_cross_entropy.py

示例13: forward

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def forward(self, model, sample, step=-1, epoche=-1, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(**sample['net_input'], tgt_lengths=sample['tgt_lengths'])
        loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce)
        sample_size = sample['target'].size(0) if self.args.sentence_avg else sample['ntokens']
        logging_output = {
            'loss': utils.item(loss.data) if reduce else loss.data,
            'nll_loss': utils.item(nll_loss.data) if reduce else nll_loss.data,
            'ntokens': sample['ntokens'],
            'nsentences': sample['target'].size(0),
            'sample_size': sample_size,
        }
        return loss, sample_size, logging_output 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:21,代碼來源:adpative_cross_entropy.py

示例14: forward

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def forward(self, model, sample, step=-1, epoche=-1, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(**sample['net_input'])
        if self.weight_scale in ['inverse', 'sqrt', 'cubic-root']:
            loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce)
        elif self.weight_scale == 'propto':
            loss, nll_loss = self.compute_propto_loss(model, net_output, sample, reduce=reduce)

        sample_size = sample['target'].size(0) if self.args.sentence_avg else sample['ntokens']
        logging_output = {
            'loss': utils.item(loss.data) if reduce else loss.data,
            'nll_loss': utils.item(nll_loss.data) if reduce else nll_loss.data,
            'ntokens': sample['ntokens'],
            'nsentences': sample['target'].size(0),
            'sample_size': sample_size,
        }
        return loss, sample_size, logging_output 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:25,代碼來源:weighted_label_smoothed_cross_entropy.py

示例15: forward

# 需要導入模塊: from fairseq import utils [as 別名]
# 或者: from fairseq.utils import item [as 別名]
def forward(self, model, sample, step=-1, epoche=-1, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(**sample['net_input'], tgt_lengths=sample['tgt_lengths'])
        writing_loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce)
        regul_loss = net_output[1].float()
        loss = writing_loss + self.alpha * regul_loss
        sample_size = sample['target'].size(0) if self.args.sentence_avg else sample['ntokens']
        logging_output = {
            'loss': utils.item(loss.data),
            'writing_loss': utils.item(writing_loss.data),
            'nll_loss': utils.item(nll_loss.data) if reduce else nll_loss.data,
            'regul_loss': utils.item(regul_loss.data),
            'ntokens': sample['ntokens'],
            'nsentences': sample['target'].size(0),
            'sample_size': sample_size,
        }
        return loss, sample_size, logging_output 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:25,代碼來源:regualrized_attention.py


注:本文中的fairseq.utils.item方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。