當前位置: 首頁>>代碼示例>>Python>>正文


Python options.eval_bool方法代碼示例

本文整理匯總了Python中fairseq.options.eval_bool方法的典型用法代碼示例。如果您正苦於以下問題:Python options.eval_bool方法的具體用法?Python options.eval_bool怎麽用?Python options.eval_bool使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在fairseq.options的用法示例。


在下文中一共展示了options.eval_bool方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setup_task

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def setup_task(cls, args, **kwargs):
        args.left_pad_source = options.eval_bool(args.left_pad_source)
        args.left_pad_target = options.eval_bool(args.left_pad_target)

        # find language pair automatically
        if args.source_lang is None or args.target_lang is None:
            args.source_lang, args.target_lang = data_utils.infer_language_pair(args.data)
        if args.source_lang is None or args.target_lang is None:
            raise Exception('Could not infer language pair, please provide it explicitly')

        # load dictionaries
        src_dict = Dictionary.load(os.path.join(args.data, 'dict.{}.txt'.format(args.source_lang)))
        tgt_dict = Dictionary.load(os.path.join(args.data, 'dict.{}.txt'.format(args.target_lang)))
        assert src_dict.pad() == tgt_dict.pad()
        assert src_dict.eos() == tgt_dict.eos()
        assert src_dict.unk() == tgt_dict.unk()
        print('| [{}] dictionary: {} types'.format(args.source_lang, len(src_dict)))
        print('| [{}] dictionary: {} types'.format(args.target_lang, len(tgt_dict)))

        return cls(args, src_dict, tgt_dict) 
開發者ID:nusnlp,項目名稱:crosentgec,代碼行數:22,代碼來源:translation.py

示例2: setup_task

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def setup_task(cls, args, **kwargs):
        args.left_pad_source = options.eval_bool(args.left_pad_source)
        args.left_pad_target = options.eval_bool(args.left_pad_target)
        args.left_pad_context = options.eval_bool(args.left_pad_context)

        # find language pair automatically
        if args.source_lang is None or args.target_lang is None:
            args.source_lang, args.target_lang = data_utils.infer_language_pair(args.data)
        if args.source_lang is None or args.target_lang is None:
            raise Exception('Could not infer language pair, please provide it explicitly')

        # load dictionaries
        ctx_dict = Dictionary.load(os.path.join(args.data, 'dict.ctx.txt'))
        src_dict = Dictionary.load(os.path.join(args.data, 'dict.{}.txt'.format(args.source_lang)))
        tgt_dict = Dictionary.load(os.path.join(args.data, 'dict.{}.txt'.format(args.target_lang)))
        assert src_dict.pad() == tgt_dict.pad()
        assert src_dict.eos() == tgt_dict.eos()
        assert src_dict.unk() == tgt_dict.unk()

        print('| [{}] dictionary: {} types'.format('ctx', len(ctx_dict)))
        print('| [{}] dictionary: {} types'.format(args.source_lang, len(src_dict)))
        print('| [{}] dictionary: {} types'.format(args.target_lang, len(tgt_dict)))

        return cls(args, src_dict, tgt_dict, ctx_dict) 
開發者ID:nusnlp,項目名稱:crosentgec,代碼行數:26,代碼來源:translation_ctx.py

示例3: setup_task

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def setup_task(cls, args, **kwargs):
        args.left_pad_source = options.eval_bool(args.left_pad_source)
        args.left_pad_target = options.eval_bool(args.left_pad_target)

        if args.source_lang is not None or args.target_lang is not None:
            if args.lang_pairs is not None:
                raise ValueError(
                    "--source-lang/--target-lang implies generation, which is "
                    "incompatible with --lang-pairs"
                )
            training = False
            args.lang_pairs = ["{}-{}".format(args.source_lang, args.target_lang)]
        else:
            training = True
            args.lang_pairs = args.lang_pairs.split(",")
            args.source_lang, args.target_lang = args.lang_pairs[0].split("-")

        dicts = tasks_utils.load_multilingual_vocabulary(args)

        return cls(args, dicts, training) 
開發者ID:pytorch,項目名稱:translate,代碼行數:22,代碼來源:multilingual_task.py

示例4: setup_task

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def setup_task(cls, args, **kwargs):
        args.left_pad_source = options.eval_bool(args.left_pad_source)
        source_dict = pytorch_translate_dictionary.Dictionary.load(
            args.source_vocab_file
        )
        target_dict = pytorch_translate_dictionary.Dictionary.load(
            args.target_vocab_file
        )
        source_lang = args.source_lang or "src"
        target_lang = args.target_lang or "tgt"
        args.append_bos = True

        print(f"| [{source_lang}] dictionary: {len(source_dict)} types")
        print(f"| [{target_lang}] dictionary: {len(target_dict)} types")

        return cls(args, source_dict, target_dict) 
開發者ID:pytorch,項目名稱:translate,代碼行數:18,代碼來源:translation_lev_task.py

示例5: setup_task

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def setup_task(cls, args, **kwargs):
        args.left_pad_source = options.eval_bool(args.left_pad_source)

        # Load dictionaries
        source_dict = MaskedLMDictionary.load(args.source_vocab_file)
        target_dict = MaskedLMDictionary.load(args.target_vocab_file)

        source_lang = args.source_lang or "src"
        target_lang = args.target_lang or "tgt"

        print(f"| [{source_lang}] dictionary: {len(source_dict)} types")
        print(f"| [{target_lang}] dictionary: {len(target_dict)} types")

        use_char_source = (args.char_source_vocab_file != "") or (
            getattr(args, "arch", "") in constants.ARCHS_FOR_CHAR_SOURCE
        )
        if use_char_source:
            char_source_dict = MaskedLMDictionary.load(args.char_source_vocab_file)
            # this attribute is used for CharSourceModel construction
            args.char_source_dict_size = len(char_source_dict)
        else:
            char_source_dict = None

        return cls(args, source_dict, target_dict, char_source_dict) 
開發者ID:pytorch,項目名稱:translate,代碼行數:26,代碼來源:translation_from_pretrained_xlm.py

示例6: setup_task

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def setup_task(cls, args, **kwargs):
        args.left_pad_source = options.eval_bool(args.left_pad_source)
        args.left_pad_target = options.eval_bool(args.left_pad_target)

        # find language pair automatically
        if args.source_lang is None or args.target_lang is None:
            args.source_lang, args.target_lang = data_utils.infer_language_pair(args.data)
        if args.source_lang is None or args.target_lang is None:
            raise Exception('Could not infer language pair, please provide it explicitly')

        # load dictionaries
        src_dict = Dictionary.load(os.path.join(args.data, 'dict.{}.txt'.format(args.source_lang)))
        tgt_dict = Dictionary.load(os.path.join(args.data, 'dict.{}.txt'.format(args.target_lang)))
        assert src_dict.pad() == tgt_dict.pad()
        assert src_dict.eos() == tgt_dict.eos()
        assert src_dict.unk() == tgt_dict.unk()
        print('| [{}] dictionary: {} types'.format(args.source_lang, len(src_dict)))
        print('| [{}] dictionary: {} types'.format(args.target_lang, len(tgt_dict)))
        
        return cls(args, src_dict, tgt_dict) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:22,代碼來源:translation.py

示例7: setup_task

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def setup_task(cls, args, **kwargs):
        """Setup GEC task, including dictionary & model building."""

        """
        Similar to the translation task, but also load labels dictionaries
        """
        args.left_pad_source = options.eval_bool(args.left_pad_source)
        args.left_pad_target = options.eval_bool(args.left_pad_target)

        # find language pair automatically
        if args.source_lang is None or args.target_lang is None:
            args.source_lang, args.target_lang = data_utils.infer_language_pair(args.data[0])
        if args.source_lang is None or args.target_lang is None:
            raise Exception('Could not infer language pair, please provide it explicitly')

        # load dictionaries
        src_dict = cls.load_dictionary(os.path.join(args.data[0], 'dict.{}.txt'.format(args.source_lang)))
        tgt_dict = cls.load_dictionary(os.path.join(args.data[0], 'dict.{}.txt'.format(args.target_lang)))
        assert src_dict.pad() == tgt_dict.pad()
        assert src_dict.eos() == tgt_dict.eos()
        assert src_dict.unk() == tgt_dict.unk()
        print('| [{}] dictionary: {} types'.format(args.source_lang, len(src_dict)))
        print('| [{}] dictionary: {} types'.format(args.target_lang, len(tgt_dict)))

        return cls(args, src_dict, tgt_dict) 
開發者ID:kakaobrain,項目名稱:helo_word,代碼行數:27,代碼來源:gec.py

示例8: setup_task

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def setup_task(cls, args, **kwargs):
        """Setup the task (e.g., load dictionaries).

        Args:
            args (argparse.Namespace): parsed command-line arguments
        """
        args.left_pad_source = options.eval_bool(args.left_pad_source)
        args.left_pad_target = options.eval_bool(args.left_pad_target)

        # find language pair automatically
        if args.source_lang is None or args.target_lang is None:
            args.source_lang, args.target_lang = data_utils.infer_language_pair(args.data[0])
        if args.source_lang is None or args.target_lang is None:
            raise Exception('Could not infer language pair, please provide it explicitly')

        # load dictionaries
        src_dict = cls.load_dictionary(os.path.join(args.data[0], 'dict.{}.txt'.format(args.source_lang)))
        tgt_dict = cls.load_dictionary(os.path.join(args.data[0], 'dict.{}.txt'.format(args.target_lang)))
        assert src_dict.pad() == tgt_dict.pad()
        assert src_dict.eos() == tgt_dict.eos()
        assert src_dict.unk() == tgt_dict.unk()
        print('| [{}] dictionary: {} types'.format(args.source_lang, len(src_dict)))
        print('| [{}] dictionary: {} types'.format(args.target_lang, len(tgt_dict)))

        return cls(args, src_dict, tgt_dict) 
開發者ID:kakaobrain,項目名稱:helo_word,代碼行數:27,代碼來源:translation.py

示例9: setup_task

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def setup_task(cls, args, **kwargs):
        """Setup the task (e.g., load dictionaries).

        Args:
            args (argparse.Namespace): parsed command-line arguments
        """
        args.left_pad_source = options.eval_bool(args.left_pad_source)
        args.left_pad_target = options.eval_bool(args.left_pad_target)

        paths = utils.split_paths(args.data)
        assert len(paths) > 0
        # find language pair automatically
        if args.source_lang is None or args.target_lang is None:
            args.source_lang, args.target_lang = data_utils.infer_language_pair(paths[0])
        if args.source_lang is None or args.target_lang is None:
            raise Exception('Could not infer language pair, please provide it explicitly')

        # load dictionaries
        src_dict = cls.load_dictionary(os.path.join(paths[0], 'dict.{}.txt'.format(args.source_lang)))
        tgt_dict = cls.load_dictionary(os.path.join(paths[0], 'dict.{}.txt'.format(args.target_lang)))
        assert src_dict.pad() == tgt_dict.pad()
        assert src_dict.eos() == tgt_dict.eos()
        assert src_dict.unk() == tgt_dict.unk()
        logger.info('[{}] dictionary: {} types'.format(args.source_lang, len(src_dict)))
        logger.info('[{}] dictionary: {} types'.format(args.target_lang, len(tgt_dict)))

        return cls(args, src_dict, tgt_dict) 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:29,代碼來源:translation.py

示例10: prepare

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def prepare(cls, args, **kargs):
        args.left_pad_source = options.eval_bool(args.left_pad_source)
        args.left_pad_target = options.eval_bool(args.left_pad_target)

        if args.lang_pairs is None:
            raise ValueError('--lang-pairs is required. List all the language pairs in the training objective.')
        if isinstance(args.lang_pairs, str):
            args.lang_pairs = args.lang_pairs.split(',')
        sorted_langs = sorted(list({x for lang_pair in args.lang_pairs for x in lang_pair.split('-')}))
        if args.source_lang is not None or args.target_lang is not None:
            training = False
        else:
            training = True

        # load dictionaries
        dicts = OrderedDict()
        for lang in sorted_langs:
            paths = utils.split_paths(args.data)
            assert len(paths) > 0
            dicts[lang] = Dictionary.load(os.path.join(paths[0], 'dict.{}.txt'.format(lang)))
            if len(dicts) > 0:
                assert dicts[lang].pad() == dicts[sorted_langs[0]].pad()
                assert dicts[lang].eos() == dicts[sorted_langs[0]].eos()
                assert dicts[lang].unk() == dicts[sorted_langs[0]].unk()
            if args.encoder_langtok is not None or args.decoder_langtok:
                for lang_to_add in sorted_langs:
                    dicts[lang].add_symbol(_lang_token(lang_to_add))
            logger.info('[{}] dictionary: {} types'.format(lang, len(dicts[lang])))
        return dicts, training 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:31,代碼來源:multilingual_translation.py

示例11: setup_task

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def setup_task(cls, args, **kwargs):
        assert pytorch_translate_data.is_multilingual(
            args
        ), "Must set `--task pytorch_translate_multilingual` for multilingual training"
        args.left_pad_source = options.eval_bool(args.left_pad_source)

        def load_dicts(langs, paths):
            dicts = OrderedDict()
            for lang, dict_path in zip(langs, paths):
                d = pytorch_translate_dictionary.Dictionary.load(dict_path)
                dicts[lang] = d
                print(f"| [{lang}] dictionary: {len(d)} types")
            return dicts

        if not hasattr(args, "multiling_source_vocab_file"):
            args.multiling_encoder_lang = args.multiling_source_lang
            args.multiling_source_vocab_file = [args.source_vocab_file]
        if not hasattr(args, "multiling_target_vocab_file"):
            args.multiling_decoder_lang = args.multiling_target_lang
            args.multiling_target_vocab_file = [args.target_vocab_file]

        # Load dictionaries
        src_dicts = load_dicts(
            args.multiling_encoder_lang, args.multiling_source_vocab_file
        )
        tgt_dicts = load_dicts(
            args.multiling_decoder_lang, args.multiling_target_vocab_file
        )

        return cls(args, src_dicts, tgt_dicts) 
開發者ID:pytorch,項目名稱:translate,代碼行數:32,代碼來源:pytorch_translate_task.py

示例12: setup_task

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def setup_task(cls, args, **kwargs):
        args.left_pad_source = options.eval_bool(args.left_pad_source)
        args.left_pad_target = options.eval_bool(args.left_pad_target)

        if args.source_lang is not None or args.target_lang is not None:
            if args.lang_pairs is not None:
                raise ValueError(
                    '--source-lang/--target-lang implies generation, which is '
                    'incompatible with --lang-pairs'
                )
            training = False
            args.lang_pairs = ['{}-{}'.format(args.source_lang, args.target_lang)]
        else:
            training = True
            args.lang_pairs = args.lang_pairs.split(',')
            args.source_lang, args.target_lang = args.lang_pairs[0].split('-')

        langs = list({x for lang_pair in args.lang_pairs for x in lang_pair.split('-')})

        # load dictionaries
        dicts = OrderedDict()
        for lang in langs:
            dicts[lang] = Dictionary.load(os.path.join(args.data, 'dict.{}.txt'.format(lang)))
            if len(dicts) > 0:
                assert dicts[lang].pad() == dicts[langs[0]].pad()
                assert dicts[lang].eos() == dicts[langs[0]].eos()
                assert dicts[lang].unk() == dicts[langs[0]].unk()
            print('| [{}] dictionary: {} types'.format(lang, len(dicts[lang])))

        return cls(args, dicts, training) 
開發者ID:kakaobrain,項目名稱:helo_word,代碼行數:32,代碼來源:multilingual_translation.py

示例13: build_model

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def build_model(cls, args, task):
        """Build a new model instance."""
        # make sure that all args are properly defaulted (in case there are any new ones)
        base_architecture(args)

        def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim):
            num_embeddings = len(dictionary)
            padding_idx = dictionary.pad()
            embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
            embed_dict = utils.parse_embedding(embed_path)
            utils.print_embed_overlap(embed_dict, dictionary)
            return utils.load_embedding(embed_dict, dictionary, embed_tokens)

        pretrained_encoder_embed = None
        if args.encoder_embed_path:
            pretrained_encoder_embed = load_pretrained_embedding_from_file(
                args.encoder_embed_path, task.source_dictionary, args.encoder_embed_dim)
        pretrained_decoder_embed = None
        if args.decoder_embed_path:
            pretrained_decoder_embed = load_pretrained_embedding_from_file(
                args.decoder_embed_path, task.target_dictionary, args.decoder_embed_dim)

        encoder = LSTMEncoder(
            dictionary=task.source_dictionary,
            embed_dim=args.encoder_embed_dim,
            hidden_size=args.encoder_hidden_size,
            num_layers=args.encoder_layers,
            dropout_in=args.encoder_dropout_in,
            dropout_out=args.encoder_dropout_out,
            bidirectional=args.encoder_bidirectional,
            pretrained_embed=pretrained_encoder_embed,
        )
        decoder = LSTMDecoder(
            dictionary=task.target_dictionary,
            embed_dim=args.decoder_embed_dim,
            hidden_size=args.decoder_hidden_size,
            out_embed_dim=args.decoder_out_embed_dim,
            num_layers=args.decoder_layers,
            dropout_in=args.decoder_dropout_in,
            dropout_out=args.decoder_dropout_out,
            attention=options.eval_bool(args.decoder_attention),
            encoder_embed_dim=args.encoder_embed_dim,
            encoder_output_units=encoder.output_units,
            pretrained_embed=pretrained_decoder_embed,
        )
        return cls(encoder, decoder) 
開發者ID:nusnlp,項目名稱:crosentgec,代碼行數:48,代碼來源:lstm.py

示例14: build_model

# 需要導入模塊: from fairseq import options [as 別名]
# 或者: from fairseq.options import eval_bool [as 別名]
def build_model(cls, args, task):
        """Build a new model instance."""

        # make sure all arguments are present in older models
        base_architecture(args)

        if getattr(args, 'max_target_positions', None) is not None:
            max_target_positions = args.max_target_positions
        else:
            max_target_positions = getattr(args, 'tokens_per_sample', DEFAULT_MAX_TARGET_POSITIONS)

        def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim):
            num_embeddings = len(dictionary)
            padding_idx = dictionary.pad()
            embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
            embed_dict = utils.parse_embedding(embed_path)
            utils.print_embed_overlap(embed_dict, dictionary)
            return utils.load_embedding(embed_dict, dictionary, embed_tokens)

        pretrained_decoder_embed = None
        if args.decoder_embed_path:
            pretrained_decoder_embed = load_pretrained_embedding_from_file(
                args.decoder_embed_path,
                task.target_dictionary,
                args.decoder_embed_dim
            )

        if args.share_decoder_input_output_embed:
            # double check all parameters combinations are valid
            if task.source_dictionary != task.target_dictionary:
                raise ValueError('--share-decoder-input-output-embeddings requires a joint dictionary')

            if args.decoder_embed_dim != args.decoder_out_embed_dim:
                raise ValueError(
                    '--share-decoder-input-output-embeddings requires '
                    '--decoder-embed-dim to match --decoder-out-embed-dim'
                    )

        decoder = LSTMDecoder(
            dictionary=task.dictionary,
            embed_dim=args.decoder_embed_dim,
            hidden_size=args.decoder_hidden_size,
            out_embed_dim=args.decoder_out_embed_dim,
            num_layers=args.decoder_layers,
            dropout_in=args.decoder_dropout_in,
            dropout_out=args.decoder_dropout_out,
            attention=options.eval_bool(args.decoder_attention),
            encoder_output_units=0,
            pretrained_embed=pretrained_decoder_embed,
            share_input_output_embed=args.share_decoder_input_output_embed,
            adaptive_softmax_cutoff=(
                options.eval_str_list(args.adaptive_softmax_cutoff, type=int)
                if args.criterion == 'adaptive_loss' else None
            ),
            max_target_positions=max_target_positions
        )

        return cls(decoder) 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:60,代碼來源:lstm_lm.py


注:本文中的fairseq.options.eval_bool方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。