本文整理匯總了Python中fairseq.modules.ConvTBC方法的典型用法代碼示例。如果您正苦於以下問題:Python modules.ConvTBC方法的具體用法?Python modules.ConvTBC怎麽用?Python modules.ConvTBC使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類fairseq.modules
的用法示例。
在下文中一共展示了modules.ConvTBC方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_convtbc
# 需要導入模塊: from fairseq import modules [as 別名]
# 或者: from fairseq.modules import ConvTBC [as 別名]
def test_convtbc(self):
# ksz, in_channels, out_channels
conv_tbc = ConvTBC(4, 5, kernel_size=3, padding=1)
# out_channels, in_channels, ksz
conv1d = nn.Conv1d(4, 5, kernel_size=3, padding=1)
conv_tbc.weight.data.copy_(conv1d.weight.data.transpose(0, 2))
conv_tbc.bias.data.copy_(conv1d.bias.data)
input_tbc = Variable(torch.randn(7, 2, 4), requires_grad=True)
input1d = Variable(input_tbc.data.transpose(0, 1).transpose(1, 2), requires_grad=True)
output_tbc = conv_tbc(input_tbc)
output1d = conv1d(input1d)
self.assertAlmostEqual(output_tbc.data.transpose(0, 1).transpose(1, 2), output1d.data)
grad_tbc = torch.randn(output_tbc.size())
grad1d = grad_tbc.transpose(0, 1).transpose(1, 2).contiguous()
output_tbc.backward(grad_tbc)
output1d.backward(grad1d)
self.assertAlmostEqual(conv_tbc.weight.grad.data.transpose(0, 2), conv1d.weight.grad.data)
self.assertAlmostEqual(conv_tbc.bias.grad.data, conv1d.bias.grad.data)
self.assertAlmostEqual(input_tbc.grad.data.transpose(0, 1).transpose(1, 2), input1d.grad.data)
示例2: ConvTBC
# 需要導入模塊: from fairseq import modules [as 別名]
# 或者: from fairseq.modules import ConvTBC [as 別名]
def ConvTBC(in_channels, out_channels, kernel_size, dropout=0, **kwargs):
"""Weight-normalized Conv1d layer"""
from fairseq.modules import ConvTBC
m = ConvTBC(in_channels, out_channels, kernel_size, **kwargs)
std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels))
nn.init.normal_(m.weight, mean=0, std=std)
nn.init.constant_(m.bias, 0)
return nn.utils.weight_norm(m, dim=2)
示例3: ConvTBC
# 需要導入模塊: from fairseq import modules [as 別名]
# 或者: from fairseq.modules import ConvTBC [as 別名]
def ConvTBC(in_channels, out_channels, kernel_size, dropout=0, **kwargs):
"""Weight-normalized Conv1d layer"""
from fairseq.modules import ConvTBC
m = ConvTBC(in_channels, out_channels, kernel_size, **kwargs)
std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels))
m.weight.data.normal_(mean=0, std=std)
m.bias.data.zero_()
return m
示例4: test_convtbc
# 需要導入模塊: from fairseq import modules [as 別名]
# 或者: from fairseq.modules import ConvTBC [as 別名]
def test_convtbc(self):
# ksz, in_channels, out_channels
conv_tbc = ConvTBC(4, 5, kernel_size=3, padding=1)
# out_channels, in_channels, ksz
conv1d = nn.Conv1d(4, 5, kernel_size=3, padding=1)
conv_tbc.weight.data.copy_(conv1d.weight.data.transpose(0, 2))
conv_tbc.bias.data.copy_(conv1d.bias.data)
input_tbc = torch.randn(7, 2, 4, requires_grad=True)
input1d = input_tbc.data.transpose(0, 1).transpose(1, 2)
input1d.requires_grad = True
output_tbc = conv_tbc(input_tbc)
output1d = conv1d(input1d)
self.assertAlmostEqual(output_tbc.data.transpose(0, 1).transpose(1, 2), output1d.data)
grad_tbc = torch.randn(output_tbc.size())
grad1d = grad_tbc.transpose(0, 1).transpose(1, 2).contiguous()
output_tbc.backward(grad_tbc)
output1d.backward(grad1d)
self.assertAlmostEqual(conv_tbc.weight.grad.data.transpose(0, 2), conv1d.weight.grad.data)
self.assertAlmostEqual(conv_tbc.bias.grad.data, conv1d.bias.grad.data)
self.assertAlmostEqual(input_tbc.grad.data.transpose(0, 1).transpose(1, 2), input1d.grad.data)
示例5: __init__
# 需要導入模塊: from fairseq import modules [as 別名]
# 或者: from fairseq.modules import ConvTBC [as 別名]
def __init__(self, dictionary, embed_dim=512, max_positions=1024,
convolutions=((512, 3),) * 20, dropout=0.1):
super().__init__(dictionary)
self.dropout = dropout
self.num_attention_layers = None
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
self.embed_positions = PositionalEmbedding(
max_positions,
embed_dim,
padding_idx,
left_pad=LanguagePairDataset.LEFT_PAD_SOURCE,
)
in_channels = convolutions[0][0]
# Shashi
self.fc1 = Linear(embed_dim+embed_dim, in_channels, dropout=dropout)
self.projections = nn.ModuleList()
self.convolutions = nn.ModuleList()
for (out_channels, kernel_size) in convolutions:
self.projections.append(Linear(in_channels, out_channels)
if in_channels != out_channels else None)
self.convolutions.append(
ConvTBC(in_channels, out_channels * 2, kernel_size,
dropout=dropout)
)
in_channels = out_channels
self.fc2 = Linear(in_channels, embed_dim+embed_dim)
示例6: ConvTBC
# 需要導入模塊: from fairseq import modules [as 別名]
# 或者: from fairseq.modules import ConvTBC [as 別名]
def ConvTBC(in_channels, out_channels, kernel_size, dropout=0, **kwargs):
"""Weight-normalized Conv1d layer"""
from fairseq.modules import ConvTBC
m = ConvTBC(in_channels, out_channels, kernel_size, **kwargs)
std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels))
m.weight.data.normal_(mean=0, std=std)
m.bias.data.zero_()
return nn.utils.weight_norm(m, dim=2)
示例7: __init__
# 需要導入模塊: from fairseq import modules [as 別名]
# 或者: from fairseq.modules import ConvTBC [as 別名]
def __init__(self, dictionary, embed_dim=512, max_positions=1024,
convolutions=((512, 3),) * 20, dropout=0.1):
super().__init__(dictionary)
self.dropout = dropout
self.num_attention_layers = None
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
self.embed_positions = PositionalEmbedding(
max_positions,
embed_dim,
padding_idx,
left_pad=LanguagePairDataset.LEFT_PAD_SOURCE,
)
in_channels = convolutions[0][0]
self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
self.projections = nn.ModuleList()
self.convolutions = nn.ModuleList()
for (out_channels, kernel_size) in convolutions:
self.projections.append(Linear(in_channels, out_channels)
if in_channels != out_channels else None)
self.convolutions.append(
ConvTBC(in_channels, out_channels * 2, kernel_size,
dropout=dropout)
)
in_channels = out_channels
self.fc2 = Linear(in_channels, embed_dim)
示例8: __init__
# 需要導入模塊: from fairseq import modules [as 別名]
# 或者: from fairseq.modules import ConvTBC [as 別名]
def __init__(
self, dictionary, embed_dim=512, embed_dict=None, max_positions=1024,
convolutions=((512, 3),) * 20, dropout=0.1, normalization_constant=0.5,
left_pad=True,
):
super().__init__(dictionary)
self.dropout = dropout
self.normalization_constant = normalization_constant
self.left_pad = left_pad
self.num_attention_layers = None
num_embeddings = len(dictionary)
self.padding_idx = dictionary.pad()
self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx)
if embed_dict:
self.embed_tokens = utils.load_embedding(embed_dict, self.dictionary, self.embed_tokens)
self.embed_positions = PositionalEmbedding(
max_positions,
embed_dim,
self.padding_idx,
left_pad=self.left_pad,
)
convolutions = extend_conv_spec(convolutions)
in_channels = convolutions[0][0]
self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
self.projections = nn.ModuleList()
self.convolutions = nn.ModuleList()
self.residuals = []
layer_in_channels = [in_channels]
for i, (out_channels, kernel_size, residual) in enumerate(convolutions):
if residual == 0:
residual_dim = out_channels
else:
residual_dim = layer_in_channels[-residual]
self.projections.append(Linear(residual_dim, out_channels)
if residual_dim != out_channels else None)
if kernel_size % 2 == 1:
padding = kernel_size // 2
else:
padding = 0
self.convolutions.append(
ConvTBC(in_channels, out_channels * 2, kernel_size,
dropout=dropout, padding=padding)
)
self.residuals.append(residual)
in_channels = out_channels
layer_in_channels.append(out_channels)
self.fc2 = Linear(in_channels, embed_dim)
示例9: __init__
# 需要導入模塊: from fairseq import modules [as 別名]
# 或者: from fairseq.modules import ConvTBC [as 別名]
def __init__(
self, dictionary, embed_dim=512, embed_dict=None, max_positions=1024,
convolutions=((512, 3),) * 20, dropout=0.1, normalization_constant=0.5,
left_pad=True, token_dropout=0.0
):
super().__init__(dictionary)
self.dropout = dropout
self.token_dropout = token_dropout
self.normalization_constant = normalization_constant
self.left_pad = left_pad
self.num_attention_layers = None
num_embeddings = len(dictionary)
self.padding_idx = dictionary.pad()
self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx)
if embed_dict:
self.embed_tokens = utils.load_embedding(embed_dict, self.dictionary, self.embed_tokens)
self.embed_positions = PositionalEmbedding(
max_positions,
embed_dim,
self.padding_idx,
left_pad=self.left_pad,
)
convolutions = extend_conv_spec(convolutions)
in_channels = convolutions[0][0]
self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
self.projections = nn.ModuleList()
self.convolutions = nn.ModuleList()
self.residuals = []
layer_in_channels = [in_channels]
for i, (out_channels, kernel_size, residual) in enumerate(convolutions):
if residual == 0:
residual_dim = out_channels
else:
residual_dim = layer_in_channels[-residual]
self.projections.append(Linear(residual_dim, out_channels)
if residual_dim != out_channels else None)
if kernel_size % 2 == 1:
padding = kernel_size // 2
else:
padding = 0
self.convolutions.append(
ConvTBC(in_channels, out_channels * 2, kernel_size,
dropout=dropout, padding=padding)
)
self.residuals.append(residual)
in_channels = out_channels
layer_in_channels.append(out_channels)
self.fc2 = Linear(in_channels, embed_dim)
示例10: __init__
# 需要導入模塊: from fairseq import modules [as 別名]
# 或者: from fairseq.modules import ConvTBC [as 別名]
def __init__(
self, dictionary, embed_dim=512, embed_dict=None, max_positions=1024,
convolutions=((512, 3),) * 20, dropout=0.1,
):
super().__init__(dictionary)
self.dropout = dropout
self.num_attention_layers = None
num_embeddings = len(dictionary)
self.padding_idx = dictionary.pad()
self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx)
if embed_dict:
self.embed_tokens = utils.load_embedding(embed_dict, self.dictionary, self.embed_tokens)
self.embed_positions = PositionalEmbedding(
max_positions,
embed_dim,
self.padding_idx,
)
convolutions = extend_conv_spec(convolutions)
in_channels = convolutions[0][0]
self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
self.projections = nn.ModuleList()
self.convolutions = nn.ModuleList()
self.residuals = []
layer_in_channels = [in_channels]
for _, (out_channels, kernel_size, residual) in enumerate(convolutions):
if residual == 0:
residual_dim = out_channels
else:
residual_dim = layer_in_channels[-residual]
self.projections.append(Linear(residual_dim, out_channels)
if residual_dim != out_channels else None)
if kernel_size % 2 == 1:
padding = kernel_size // 2
else:
padding = 0
self.convolutions.append(
ConvTBC(in_channels, out_channels * 2, kernel_size,
dropout=dropout, padding=padding)
)
self.residuals.append(residual)
in_channels = out_channels
layer_in_channels.append(out_channels)
self.fc2 = Linear(in_channels, embed_dim)
示例11: __init__
# 需要導入模塊: from fairseq import modules [as 別名]
# 或者: from fairseq.modules import ConvTBC [as 別名]
def __init__(
self, dictionary, embed_dim=512, max_positions=1024,
convolutions=((512, 3),) * 20, dropout=0.1, attention=False,
attention_nheads=1,
):
super().__init__(dictionary)
self.dropout = dropout
self.num_attention_layers = None
num_embeddings = len(dictionary)
self.padding_idx = dictionary.pad()
self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx)
self.embed_positions = PositionalEmbedding(
max_positions,
embed_dim,
self.padding_idx,
)
def expand_bool_array(val):
if isinstance(val, bool):
# expand True into [True, True, ...] and do the same with False
return [val] * len(convolutions)
return val
attention = expand_bool_array(attention)
in_channels = convolutions[0][0]
self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
self.projections = nn.ModuleList()
self.convolutions = nn.ModuleList()
self.attention = nn.ModuleList()
self.attproj = nn.ModuleList()
for i, (out_channels, kernel_size) in enumerate(convolutions):
self.projections.append(
Linear(in_channels, out_channels) if in_channels != out_channels else None
)
self.convolutions.append(
ConvTBC(in_channels, out_channels * 2, kernel_size, dropout=dropout)
)
self.attention.append(
SelfAttention(out_channels, embed_dim, attention_nheads) if attention[i] else None
)
in_channels = out_channels
self.fc2 = Linear(in_channels, embed_dim)
示例12: __init__
# 需要導入模塊: from fairseq import modules [as 別名]
# 或者: from fairseq.modules import ConvTBC [as 別名]
def __init__(
self, dictionary, embed_dim=512, max_positions=1024,
convolutions=((512, 3),) * 20, dropout=0.1, attention=False,
attention_nheads=1, left_pad=True,
):
super().__init__(dictionary)
self.dropout = dropout
self.num_attention_layers = None
self.left_pad = left_pad
num_embeddings = len(dictionary)
self.padding_idx = dictionary.pad()
self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx)
self.embed_positions = PositionalEmbedding(
max_positions,
embed_dim,
self.padding_idx,
left_pad=self.left_pad,
)
def expand_bool_array(val):
if isinstance(val, bool):
# expand True into [True, True, ...] and do the same with False
return [val] * len(convolutions)
return val
attention = expand_bool_array(attention)
in_channels = convolutions[0][0]
self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
self.projections = nn.ModuleList()
self.convolutions = nn.ModuleList()
self.attention = nn.ModuleList()
self.attproj = nn.ModuleList()
for i, (out_channels, kernel_size) in enumerate(convolutions):
self.projections.append(
Linear(in_channels, out_channels) if in_channels != out_channels else None
)
self.convolutions.append(
ConvTBC(in_channels, out_channels * 2, kernel_size, dropout=dropout)
)
self.attention.append(
SelfAttention(out_channels, embed_dim, attention_nheads) if attention[i] else None
)
in_channels = out_channels
self.fc2 = Linear(in_channels, embed_dim)