當前位置: 首頁>>代碼示例>>Python>>正文


Python facenet.prewhiten方法代碼示例

本文整理匯總了Python中facenet.prewhiten方法的典型用法代碼示例。如果您正苦於以下問題:Python facenet.prewhiten方法的具體用法?Python facenet.prewhiten怎麽用?Python facenet.prewhiten使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在facenet的用法示例。


在下文中一共展示了facenet.prewhiten方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: execute

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import prewhiten [as 別名]
def execute(self, data, batch_size):
    image_list = []
    results = []
    for i in range(batch_size):
      img = Image.open(data[i])
      img = misc.fromimage(img)
      img = misc.imresize(img, (160, 160), interp='bilinear')
      prewhitened = facenet.prewhiten(img)
      image_list.append(prewhitened)

    rets = self.cal_embed(image_list)

    for i in range(batch_size):
      ret = rets[i].tolist()
      ret = json.dumps(ret)
      #ret = json.dumps([[ret.__dict__ for ob in lst] for lst in ret])
      results.append(ret)

    return results 
開發者ID:ucloud,項目名稱:uai-sdk,代碼行數:21,代碼來源:facenet_inference.py

示例2: load_and_align_data

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import prewhiten [as 別名]
def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction):

    minsize = 20 # minimum size of face
    threshold = [ 0.6, 0.7, 0.7 ]  # three steps's threshold
    factor = 0.709 # scale factor
    
    print('Creating networks and loading parameters')
    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None)
  
    tmp_image_paths=copy.copy(image_paths)
    img_list = []
    for image in tmp_image_paths:
        img = misc.imread(os.path.expanduser(image), mode='RGB')
        img_size = np.asarray(img.shape)[0:2]
        bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
        if len(bounding_boxes) < 1:
          image_paths.remove(image)
          print("can't detect face, remove ", image)
          continue
        det = np.squeeze(bounding_boxes[0,0:4])
        bb = np.zeros(4, dtype=np.int32)
        bb[0] = np.maximum(det[0]-margin/2, 0)
        bb[1] = np.maximum(det[1]-margin/2, 0)
        bb[2] = np.minimum(det[2]+margin/2, img_size[1])
        bb[3] = np.minimum(det[3]+margin/2, img_size[0])
        cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
        aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
        prewhitened = facenet.prewhiten(aligned)
        img_list.append(prewhitened)
    images = np.stack(img_list)
    return images 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:37,代碼來源:compare.py

示例3: load_and_align_data

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import prewhiten [as 別名]
def load_and_align_data(image_paths,
                        image_size=160,
                        margin=44,
                        gpu_memory_fraction=1.0):
    minsize = 20
    threshold = [0.6, 0.7, 0.7]
    factor = 0.709

    print('Creating networks and loading parameters')
    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(
            gpu_options=gpu_options, log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None)

    nrof_samples = len(image_paths)
    img_list = [None] * nrof_samples
    for i in range(nrof_samples):
        img = misc.imread(os.path.expanduser(image_paths[i]), mode='RGB')
        img_size = np.asarray(img.shape)[0:2]
        bounding_boxes, _ = align.detect_face.detect_face(
            img, minsize, pnet, rnet, onet, threshold, factor)
        det = np.squeeze(bounding_boxes[0, 0:4])
        bb = np.zeros(4, dtype=np.int32)
        bb[0] = np.maximum(det[0] - margin / 2, 0)
        bb[1] = np.maximum(det[1] - margin / 2, 0)
        bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
        bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
        cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
        aligned = misc.imresize(
            cropped, (image_size, image_size), interp='bilinear')
        prewhitened = prewhiten(aligned)
        img_list[i] = prewhitened
    images = np.stack(img_list)
    return images 
開發者ID:PacktPublishing,項目名稱:Deep-Learning-for-Computer-Vision,代碼行數:39,代碼來源:6_extract_features.py

示例4: generate_embedding

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import prewhiten [as 別名]
def generate_embedding(self, face):
        # Get input and output tensors
        images_placeholder = self.sess.graph.get_tensor_by_name("batch_join:0") #jjia changed 2018/01/21
        embeddings = self.sess.graph.get_tensor_by_name("embeddings:0")
        phase_train_placeholder = self.sess.graph.get_tensor_by_name("phase_train:0")

        prewhiten_face = facenet.prewhiten(face.image)

        # Run forward pass to calculate embeddings
        feed_dict = {images_placeholder: [prewhiten_face], phase_train_placeholder: False}
        #jjia
        #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
        #sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
        return self.sess.run(embeddings, feed_dict=feed_dict)[0] 
開發者ID:JerryJiaGit,項目名稱:facenet_trt,代碼行數:16,代碼來源:face.py

示例5: load_and_align_data

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import prewhiten [as 別名]
def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction):

    minsize = 20 # minimum size of face
    threshold = [ 0.6, 0.7, 0.7 ]  # three steps's threshold
    factor = 0.709 # scale factor
    
    print('Creating networks and loading parameters')
    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None)
  
    nrof_samples = len(image_paths)
    img_list = [] 
    count_per_image = []
    for i in xrange(nrof_samples):
        img = misc.imread(os.path.expanduser(image_paths[i]))
        img_size = np.asarray(img.shape)[0:2]
        bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
        count_per_image.append(len(bounding_boxes))
        for j in range(len(bounding_boxes)):	
                det = np.squeeze(bounding_boxes[j,0:4])
                bb = np.zeros(4, dtype=np.int32)
                bb[0] = np.maximum(det[0]-margin/2, 0)
                bb[1] = np.maximum(det[1]-margin/2, 0)
                bb[2] = np.minimum(det[2]+margin/2, img_size[1])
                bb[3] = np.minimum(det[3]+margin/2, img_size[0])
                cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
                aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
                prewhitened = facenet.prewhiten(aligned)
                img_list.append(prewhitened)		
    images = np.stack(img_list)
    return images, count_per_image, nrof_samples 
開發者ID:jiangxiluning,項目名稱:facenet_mtcnn_to_mobile,代碼行數:36,代碼來源:predict.py

示例6: preprocess

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import prewhiten [as 別名]
def preprocess(self, data):
    json_data = json.load(data)
    cnt = json_data['cnt']
    raw_images = json_data['images']
    images = []
    for raw_image in raw_images:
      img_data = raw_image.decode('base64')
      img = Image.open(StringIO.StringIO(img_data))
      img = misc.fromimage(img)
      img = misc.imresize(img, (160, 160), interp='bilinear')
      prewhitened = facenet.prewhiten(img)
      images.append(prewhitened)

    return images 
開發者ID:ucloud,項目名稱:uai-sdk,代碼行數:16,代碼來源:facenet_inference.py

示例7: preprocess

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import prewhiten [as 別名]
def preprocess(self, data):
    _, img_list = img_utils.decode_json_to_images(data)
    
    images = []
    for img in img_list:
      img = misc.fromimage(img)
      img = misc.imresize(img, (160, 160), interp='bilinear')
      prewhitened = facenet.prewhiten(img)
      images.append(prewhitened)

    return images 
開發者ID:ucloud,項目名稱:uai-sdk,代碼行數:13,代碼來源:facenet_json_inference.py

示例8: load_and_align_data

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import prewhiten [as 別名]
def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction):

    minsize = 20 # minimum size of face
    threshold = [ 0.6, 0.7, 0.7 ]  # three steps's threshold
    factor = 0.709 # scale factor

    print('Creating networks and loading parameters')
    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None)

    nrof_samples = len(image_paths)
    img_list = [None] * nrof_samples
    for i in xrange(nrof_samples):
        print(image_paths[i])
        img = misc.imread(os.path.expanduser(image_paths[i]))
        img_size = np.asarray(img.shape)[0:2]
        bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
        det = np.squeeze(bounding_boxes[0,0:4])
        bb = np.zeros(4, dtype=np.int32)
        bb[0] = np.maximum(det[0]-margin/2, 0)
        bb[1] = np.maximum(det[1]-margin/2, 0)
        bb[2] = np.minimum(det[2]+margin/2, img_size[1])
        bb[3] = np.minimum(det[3]+margin/2, img_size[0])
        cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
        aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
        prewhitened = facenet.prewhiten(aligned)
        img_list[i] = prewhitened
    images = np.stack(img_list)
    return images 
開發者ID:1024210879,項目名稱:facenet-demo,代碼行數:34,代碼來源:export_embeddings.py

示例9: align_data

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import prewhiten [as 別名]
def align_data(image_list, image_size, margin, pnet, rnet, onet):
    minsize = 20  # minimum size of face
    threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    factor = 0.709  # scale factor

    img_list = []

    for x in range(len(image_list)):
        img_size = np.asarray(image_list[x].shape)[0:2]
        bounding_boxes, _ = align.detect_face.detect_face(image_list[x], minsize, pnet, rnet, onet, threshold, factor)
        nrof_samples = len(bounding_boxes)
        if nrof_samples > 0:
            for i in range(nrof_samples):
                if bounding_boxes[i][4] > 0.95:
                    det = np.squeeze(bounding_boxes[i, 0:4])
                    bb = np.zeros(4, dtype=np.int32)
                    bb[0] = np.maximum(det[0] - margin / 2, 0)
                    bb[1] = np.maximum(det[1] - margin / 2, 0)
                    bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
                    bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
                    cropped = image_list[x][bb[1]:bb[3], bb[0]:bb[2], :]
                    aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
                    prewhitened = facenet.prewhiten(aligned)
                    img_list.append(prewhitened)

    if len(img_list) > 0:
        images = np.stack(img_list)
        return images
    else:
        return None 
開發者ID:1024210879,項目名稱:facenet-demo,代碼行數:32,代碼來源:cluster.py

示例10: generate_embedding

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import prewhiten [as 別名]
def generate_embedding(self, face):
        # Get input and output tensors
        images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
        embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
        phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")

        prewhiten_face = facenet.prewhiten(face.image)

        # Run forward pass to calculate embeddings
        feed_dict = {images_placeholder: [prewhiten_face], phase_train_placeholder: False}
        return self.sess.run(embeddings, feed_dict=feed_dict)[0] 
開發者ID:1024210879,項目名稱:facenet-demo,代碼行數:13,代碼來源:face.py

示例11: align_data

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import prewhiten [as 別名]
def align_data(image_list, image_size, margin, pnet, rnet, onet):
    minsize = 20  # minimum size of face
    threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    factor = 0.709  # scale factor

    img_list = []

    for x in xrange(len(image_list)):
        img_size = np.asarray(image_list[x].shape)[0:2]
        bounding_boxes, _ = align.detect_face.detect_face(image_list[x], minsize, pnet, rnet, onet, threshold, factor)
        nrof_samples = len(bounding_boxes)
        if nrof_samples > 0:
            for i in xrange(nrof_samples):
                if bounding_boxes[i][4] > 0.95:
                    det = np.squeeze(bounding_boxes[i, 0:4])
                    bb = np.zeros(4, dtype=np.int32)
                    bb[0] = np.maximum(det[0] - margin / 2, 0)
                    bb[1] = np.maximum(det[1] - margin / 2, 0)
                    bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
                    bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
                    cropped = image_list[x][bb[1]:bb[3], bb[0]:bb[2], :]
                    aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
                    prewhitened = facenet.prewhiten(aligned)
                    img_list.append(prewhitened)

    if len(img_list) > 0:
        images = np.stack(img_list)
        return images
    else:
        return None 
開發者ID:davidsandberg,項目名稱:facenet,代碼行數:32,代碼來源:cluster.py


注:本文中的facenet.prewhiten方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。