當前位置: 首頁>>代碼示例>>Python>>正文


Python facenet.load_model方法代碼示例

本文整理匯總了Python中facenet.load_model方法的典型用法代碼示例。如果您正苦於以下問題:Python facenet.load_model方法的具體用法?Python facenet.load_model怎麽用?Python facenet.load_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在facenet的用法示例。


在下文中一共展示了facenet.load_model方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_model [as 別名]
def __init__(self):
        INT8ENABLE = False
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
        self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) #allow_growth=True, to do growth mem allocation 
        with self.sess.as_default():
            graph_load = facenet.load_model(facenet_model_checkpoint)
        self.sess.close()
        tf.reset_default_graph()
        self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
        ##      #For INT8 calib
        if INT8ENABLE:
            print("TensorRT INT8 Enabled and Running INT8 Calib")
            input_map = np.random.random_sample((1,160,160,3))
            inc=tf.constant(input_map, dtype=tf.float32)
            dataset=tf.data.Dataset.from_tensors(inc)
            dataset=dataset.repeat()
            iterator=dataset.make_one_shot_iterator()
            next_element=iterator.get_next()
            out=tf.import_graph_def(graph_load, input_map={"input":next_element, "phase_train": False}, return_elements=[ "embeddings"])
            self.sess.run(out)
            graph_load=trt.calib_graph_to_infer_graph(graph_load)
            #for node in trt_int8_graph.node:print("[NODE] ",  node.name, node.op)
            #for op in sess.graph.get_operations():print("[OP] ", op.name)
        tf.import_graph_def(graph_load, input_map=None, name='') 
開發者ID:JerryJiaGit,項目名稱:facenet_trt,代碼行數:26,代碼來源:face.py

示例2: load_model

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_model [as 別名]
def load_model(self):
    sess = tf.Session()

    with sess.as_default():
      # Load the model
      facenet.load_model(self.model_dir)

    # Get input and output tensors
    images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
    embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
    phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")

    self._images_placeholder=images_placeholder
    self._embeddings=embeddings
    self._phase_train_placeholder=phase_train_placeholder
    self._sess = sess 
開發者ID:ucloud,項目名稱:uai-sdk,代碼行數:18,代碼來源:facenet_inference.py

示例3: __init__

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_model [as 別名]
def __init__(self):
        super(InceptionResnetV1Model, self).__init__('model', None, {})

        # Load Facenet CNN
        facenet.load_model(self.model_path)
        # Save input and output tensors references
        graph = tf.get_default_graph()
        self.face_input = graph.get_tensor_by_name("input:0")
        self.embedding_output = graph.get_tensor_by_name("embeddings:0") 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:11,代碼來源:facenet_fgsm.py

示例4: main

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_model [as 別名]
def main(args):
  
    with tf.Graph().as_default():
      
        with tf.Session() as sess:
            
            # Read the file containing the pairs used for testing
            pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))

            # Get the paths for the corresponding images
            paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs)
            
            image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths')
            labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels')
            batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
            control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control')
            phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
 
            nrof_preprocess_threads = 4
            image_size = (args.image_size, args.image_size)
            eval_input_queue = data_flow_ops.FIFOQueue(capacity=2000000,
                                        dtypes=[tf.string, tf.int32, tf.int32],
                                        shapes=[(1,), (1,), (1,)],
                                        shared_name=None, name=None)
            eval_enqueue_op = eval_input_queue.enqueue_many([image_paths_placeholder, labels_placeholder, control_placeholder], name='eval_enqueue_op')
            image_batch, label_batch = facenet.create_input_pipeline(eval_input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder)
     
            # Load the model
            input_map = {'image_batch': image_batch, 'label_batch': label_batch, 'phase_train': phase_train_placeholder}
            facenet.load_model(args.model, input_map=input_map)

            # Get output tensor
            embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
#              
            coord = tf.train.Coordinator()
            tf.train.start_queue_runners(coord=coord, sess=sess)

            evaluate(sess, eval_enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder,
                embeddings, label_batch, paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, args.distance_metric, args.subtract_mean,
                args.use_flipped_images, args.use_fixed_image_standardization) 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:42,代碼來源:validate_on_lfw.py

示例5: main

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_model [as 別名]
def main(args):

    images = load_and_align_data(args.image_files, args.image_size, args.margin, args.gpu_memory_fraction)
    with tf.Graph().as_default():

        with tf.Session() as sess:
      
            # Load the model
            facenet.load_model(args.model)
    
            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
            phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")

            # Run forward pass to calculate embeddings
            feed_dict = { images_placeholder: images, phase_train_placeholder:False }
            emb = sess.run(embeddings, feed_dict=feed_dict)
            
            nrof_images = len(args.image_files)

            print('Images:')
            for i in range(nrof_images):
                print('%1d: %s' % (i, args.image_files[i]))
            print('')
            
            # Print distance matrix
            print('Distance matrix')
            print('    ', end='')
            for i in range(nrof_images):
                print('    %1d     ' % i, end='')
            print('')
            for i in range(nrof_images):
                print('%1d  ' % i, end='')
                for j in range(nrof_images):
                    dist = np.sqrt(np.sum(np.square(np.subtract(emb[i,:], emb[j,:]))))
                    print('  %1.4f  ' % dist, end='')
                print('') 
開發者ID:cjekel,項目名稱:tindetheus,代碼行數:40,代碼來源:compare.py

示例6: main

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_model [as 別名]
def main(args):
  
    #images, cout_per_image, nrof_samples = load_and_align_data(args.image_files,args.image_size, args.margin, args.gpu_memory_fraction)
    with tf.Graph().as_default():

       with tf.Session() as sess:
      
            # Load the model
                facenet.load_model(args.model)
            # Get input and output tensors
                images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
                embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
                phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")

            # Run forward pass to calculate embeddings
                feed_dict = { images_placeholder: images , phase_train_placeholder:False}
                emb = sess.run(embeddings, feed_dict=feed_dict)
                classifier_filename_exp = os.path.expanduser(args.classifier_filename)
                with open(classifier_filename_exp, 'rb') as infile:
                    (model, class_names) = pickle.load(infile)
                print('Loaded classifier model from file "%s"\n' % classifier_filename_exp)
                predictions = model.predict_proba(emb)
                best_class_indices = np.argmax(predictions, axis=1)
                best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices]
                k=0     
	    #print predictions       
                for i in range(nrof_samples):
                    print("\npeople in image %s :" %(args.image_files[i]))
                    for j in range(cout_per_image[i]):
                        print('%s: %.3f' % (class_names[best_class_indices[k]], best_class_probabilities[k]))
                        k+=1 
開發者ID:jiangxiluning,項目名稱:facenet_mtcnn_to_mobile,代碼行數:33,代碼來源:predict.py

示例7: main

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_model [as 別名]
def main(args):
  
    images, cout_per_image, nrof_samples = load_and_align_data(args.image_files,args.image_size, args.margin, args.gpu_memory_fraction)
    with tf.Graph().as_default():

       with tf.Session() as sess:
      
            # Load the model
                facenet.load_model(args.model)
            # Get input and output tensors
                images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
                embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
                phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")

            # Run forward pass to calculate embeddings
                feed_dict = { images_placeholder: images , phase_train_placeholder:False}
                emb = sess.run(embeddings, feed_dict=feed_dict)
                classifier_filename_exp = os.path.expanduser(args.classifier_filename)
                with open(classifier_filename_exp, 'rb') as infile:
                    (model, class_names) = pickle.load(infile)
                print('Loaded classifier model from file "%s"\n' % classifier_filename_exp)
                predictions = model.predict_proba(emb)
                best_class_indices = np.argmax(predictions, axis=1)
                best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices]
                k=0     
	    #print predictions       
                for i in range(nrof_samples):
                    print("\npeople in image %s :" %(args.image_files[i]))
                    for j in range(cout_per_image[i]):
                        print('%s: %.3f' % (class_names[best_class_indices[k]], best_class_probabilities[k]))
                        k+=1 
開發者ID:1024210879,項目名稱:facenet-demo,代碼行數:33,代碼來源:predict.py

示例8: __init__

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_model [as 別名]
def __init__(self):
        self.sess = tf.Session()
        with self.sess.as_default():
            facenet.load_model(facenet_model_checkpoint) 
開發者ID:davidsandberg,項目名稱:facenet,代碼行數:6,代碼來源:face.py

示例9: __init__

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_model [as 別名]
def __init__(self):
    super(InceptionResnetV1Model, self).__init__(scope='model')

    # Load Facenet CNN
    facenet.load_model(self.model_path)
    # Save input and output tensors references
    graph = tf.get_default_graph()
    self.face_input = graph.get_tensor_by_name("input:0")
    self.embedding_output = graph.get_tensor_by_name("embeddings:0") 
開發者ID:tensorflow,項目名稱:cleverhans,代碼行數:11,代碼來源:facenet_fgsm.py

示例10: init_triplet_model

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_model [as 別名]
def init_triplet_model():
    global track_struct
    global triplet_graph
    global triplet_sess
    
    global eval_enqueue_op
    global image_paths_placeholder
    global labels_placeholder
    global phase_train_placeholder
    global batch_size_placeholder
    global control_placeholder
    global embeddings
    global label_batch
    global distance_metric
    f_image_size = 160 
    distance_metric = 0 

    triplet_graph = tf.Graph()
    with triplet_graph.as_default():
        image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths')
        labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels')
        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control')
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

        nrof_preprocess_threads = 4
        image_size = (f_image_size, f_image_size)
        eval_input_queue = data_flow_ops.FIFOQueue(capacity=2000000,
                                    dtypes=[tf.string, tf.int32, tf.int32],
                                    shapes=[(1,), (1,), (1,)],
                                    shared_name=None, name=None)
        eval_enqueue_op = eval_input_queue.enqueue_many([image_paths_placeholder, 
                                                         labels_placeholder, control_placeholder], 
                                                        name='eval_enqueue_op')
        image_batch, label_batch = facenet.create_input_pipeline(eval_input_queue, image_size, 
                                                                 nrof_preprocess_threads, batch_size_placeholder)
    triplet_sess = tf.Session(graph=triplet_graph)   
    with triplet_sess.as_default():
        with triplet_graph.as_default():
            # Load the model
            input_map = {'image_batch': image_batch, 'label_batch': label_batch, 'phase_train': phase_train_placeholder}
            facenet.load_model(track_struct['file_path']['triplet_model'], input_map=input_map)
            
            # Get output tensor
            embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
            coord = tf.train.Coordinator()
            tf.train.start_queue_runners(coord=coord, sess=triplet_sess)
    return 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:50,代碼來源:tracklet_utils_3d_online.py

示例11: feature_extract

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_model [as 別名]
def feature_extract(feature_size, num_patch, max_length, patch_folder, triplet_model): 
    f_image_size = 160 
    distance_metric = 0 
    with tf.Graph().as_default():

        with tf.Session() as sess:

            image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths')
            labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels')
            batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
            control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control')
            phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

            nrof_preprocess_threads = 4
            image_size = (f_image_size, f_image_size)
            eval_input_queue = data_flow_ops.FIFOQueue(capacity=2000000,
                                    dtypes=[tf.string, tf.int32, tf.int32],
                                    shapes=[(1,), (1,), (1,)],
                                    shared_name=None, name=None)
            eval_enqueue_op = eval_input_queue.enqueue_many([image_paths_placeholder, 
                                                         labels_placeholder, control_placeholder], 
                                                        name='eval_enqueue_op')
            image_batch, label_batch = facenet.create_input_pipeline(eval_input_queue, image_size, 
                                                                 nrof_preprocess_threads, batch_size_placeholder)

            # Load the model
            input_map = {'image_batch': image_batch, 'label_batch': label_batch, 'phase_train': phase_train_placeholder}
            facenet.load_model(triplet_model, input_map=input_map)

            # Get output tensor
            embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
            coord = tf.train.Coordinator()
            tf.train.start_queue_runners(coord=coord, sess=sess)

            fea_mat = np.zeros((num_patch,feature_size-4+2))
            tracklet_list = os.listdir(patch_folder)
            N_tracklet = len(tracklet_list)
            cnt = 0
            for n in range(N_tracklet):
                tracklet_folder = patch_folder+'/'+tracklet_list[n]
                patch_list = os.listdir(tracklet_folder)

                # get patch list, track_id and fr_id, starts from 1
                prev_cnt = cnt
                for m in range(len(patch_list)):
                    # track_id
                    fea_mat[cnt,0] = n+1
                    # fr_id
                    fea_mat[cnt,1] = int(patch_list[m][-8:-4])
                    cnt = cnt+1
                    patch_list[m] = tracklet_folder+'/'+patch_list[m]


                #print(n)
                lfw_batch_size = len(patch_list)     
                emb_array = feature_encode(sess, eval_enqueue_op, image_paths_placeholder, labels_placeholder, 
                                    phase_train_placeholder,batch_size_placeholder, control_placeholder, 
                                    embeddings, label_batch, patch_list, lfw_batch_size, distance_metric)
                fea_mat[prev_cnt:prev_cnt+lfw_batch_size,2:] = np.copy(emb_array)
    return fea_mat 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:62,代碼來源:tracklet_utils_3d.py

示例12: main

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_model [as 別名]
def main(args):

	with tf.Graph().as_default():

		with tf.Session() as sess:

			# create output directory if it doesn't exist
			output_dir = os.path.expanduser(args.output_dir)
			if not os.path.isdir(output_dir):
				os.makedirs(output_dir)

			# load the model
			print("Loading trained model...\n")
			meta_file, ckpt_file = facenet.get_model_filenames(os.path.expanduser(args.trained_model_dir))
			facenet.load_model(args.trained_model_dir, meta_file, ckpt_file)

			# grab all image paths and labels
			print("Finding image paths and targets...\n")
			data = load_files(args.data_dir, load_content=False, shuffle=False)
			labels_array = data['target']
			paths = data['filenames']

			# Get input and output tensors
			images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
			embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
			phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")

			image_size = images_placeholder.get_shape()[1]
			embedding_size = embeddings.get_shape()[1]

			# Run forward pass to calculate embeddings
			print('Generating embeddings from images...\n')
			start_time = time.time()
			batch_size = args.batch_size
			nrof_images = len(paths)
			nrof_batches = int(np.ceil(1.0*nrof_images / batch_size))
			emb_array = np.zeros((nrof_images, embedding_size))
			for i in xrange(nrof_batches):
				start_index = i*batch_size
				end_index = min((i+1)*batch_size, nrof_images)
				paths_batch = paths[start_index:end_index]
				images = facenet.load_data(paths_batch, do_random_crop=False, do_random_flip=False, image_size=image_size, do_prewhiten=True)
				feed_dict = { images_placeholder:images, phase_train_placeholder:False}
				emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict)

			time_avg_forward_pass = (time.time() - start_time) / float(nrof_images)
			print("Forward pass took avg of %.3f[seconds/image] for %d images\n" % (time_avg_forward_pass, nrof_images))

			print("Finally saving embeddings and gallery to: %s" % (output_dir))
			# save the gallery and embeddings (signatures) as numpy arrays to disk
			np.save(os.path.join(output_dir, "gallery.npy"), labels_array)
			np.save(os.path.join(output_dir, "signatures.npy"), emb_array) 
開發者ID:1024210879,項目名稱:facenet-demo,代碼行數:54,代碼來源:batch_represent.py


注:本文中的facenet.load_model方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。