本文整理匯總了Python中facenet.load_data方法的典型用法代碼示例。如果您正苦於以下問題:Python facenet.load_data方法的具體用法?Python facenet.load_data怎麽用?Python facenet.load_data使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類facenet
的用法示例。
在下文中一共展示了facenet.load_data方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: evaluate_accuracy
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_data [as 別名]
def evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, image_size, embeddings,
paths, actual_issame, augment_images, aug_value, batch_size, orig_image_size, seed):
nrof_images = len(paths)
nrof_batches = int(math.ceil(1.0*nrof_images / batch_size))
emb_list = []
for i in range(nrof_batches):
start_index = i*batch_size
end_index = min((i+1)*batch_size, nrof_images)
paths_batch = paths[start_index:end_index]
images = facenet.load_data(paths_batch, False, False, orig_image_size)
images_aug = augment_images(images, aug_value, image_size)
feed_dict = { images_placeholder: images_aug, phase_train_placeholder: False }
emb_list += sess.run([embeddings], feed_dict=feed_dict)
emb_array = np.vstack(emb_list) # Stack the embeddings to a nrof_examples_per_epoch x 128 matrix
thresholds = np.arange(0, 4, 0.01)
embeddings1 = emb_array[0::2]
embeddings2 = emb_array[1::2]
_, _, accuracy = facenet.calculate_roc(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), seed)
return accuracy
示例2: load_testset
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_data [as 別名]
def load_testset(size):
# Load images paths and labels
pairs = lfw.read_pairs(pairs_path)
paths, labels = lfw.get_paths(testset_path, pairs, file_extension)
# Random choice
permutation = np.random.choice(len(labels), size, replace=False)
paths_batch_1 = []
paths_batch_2 = []
for index in permutation:
paths_batch_1.append(paths[index * 2])
paths_batch_2.append(paths[index * 2 + 1])
labels = np.asarray(labels)[permutation]
paths_batch_1 = np.asarray(paths_batch_1)
paths_batch_2 = np.asarray(paths_batch_2)
# Load images
faces1 = facenet.load_data(paths_batch_1, False, False, image_size)
faces2 = facenet.load_data(paths_batch_2, False, False, image_size)
# Change pixel values to 0 to 1 values
min_pixel = min(np.min(faces1), np.min(faces2))
max_pixel = max(np.max(faces1), np.max(faces2))
faces1 = (faces1 - min_pixel) / (max_pixel - min_pixel)
faces2 = (faces2 - min_pixel) / (max_pixel - min_pixel)
# Convert labels to one-hot vectors
onehot_labels = []
for index in range(len(labels)):
if labels[index]:
onehot_labels.append([1, 0])
else:
onehot_labels.append([0, 1])
return faces1, faces2, np.array(onehot_labels)
示例3: main
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_data [as 別名]
def main():
image_size = 96
old_dataset = '/home/david/datasets/facescrub/fs_aligned_new_oean/'
new_dataset = '/home/david/datasets/facescrub/facescrub_110_96/'
eq = 0
num = 0
l = []
dataset = facenet.get_dataset(old_dataset)
for cls in dataset:
new_class_dir = os.path.join(new_dataset, cls.name)
for image_path in cls.image_paths:
try:
filename = os.path.splitext(os.path.split(image_path)[1])[0]
new_filename = os.path.join(new_class_dir, filename+'.png')
#print(image_path)
if os.path.exists(new_filename):
a = facenet.load_data([image_path, new_filename], False, False, image_size, do_prewhiten=False)
if np.array_equal(a[0], a[1]):
eq+=1
num+=1
err = np.sum(np.square(np.subtract(a[0], a[1])))
#print(err)
l.append(err)
if err>2000:
fig = plt.figure(1)
p1 = fig.add_subplot(121)
p1.imshow(a[0])
p2 = fig.add_subplot(122)
p2.imshow(a[1])
print('%6.1f: %s\n' % (err, new_filename))
pass
else:
pass
#print('File not found: %s' % new_filename)
except:
pass
示例4: compute_facial_encodings
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_data [as 別名]
def compute_facial_encodings(sess,images_placeholder,embeddings,phase_train_placeholder,image_size,
embedding_size,nrof_images,nrof_batches,emb_array,batch_size,paths):
""" Compute Facial Encodings
Given a set of images, compute the facial encodings of each face detected in the images and
return them. If no faces, or more than one face found, return nothing for that image.
Inputs:
image_paths: a list of image paths
Outputs:
facial_encodings: (image_path, facial_encoding) dictionary of facial encodings
"""
for i in range(nrof_batches):
start_index = i*batch_size
end_index = min((i+1)*batch_size, nrof_images)
paths_batch = paths[start_index:end_index]
images = facenet.load_data(paths_batch, False, False, image_size)
feed_dict = { images_placeholder:images, phase_train_placeholder:False }
emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict)
facial_encodings = {}
for x in range(nrof_images):
facial_encodings[paths[x]] = emb_array[x,:]
return facial_encodings
示例5: load_testset
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_data [as 別名]
def load_testset(size):
# Load images paths and labels
pairs = lfw.read_pairs(pairs_path)
paths, labels = lfw.get_paths(testset_path, pairs)
# Random choice
permutation = np.random.choice(len(labels), size, replace=False)
paths_batch_1 = []
paths_batch_2 = []
for index in permutation:
paths_batch_1.append(paths[index * 2])
paths_batch_2.append(paths[index * 2 + 1])
labels = np.asarray(labels)[permutation]
paths_batch_1 = np.asarray(paths_batch_1)
paths_batch_2 = np.asarray(paths_batch_2)
# Load images
faces1 = facenet.load_data(paths_batch_1, False, False, image_size)
faces2 = facenet.load_data(paths_batch_2, False, False, image_size)
# Change pixel values to 0 to 1 values
min_pixel = min(np.min(faces1), np.min(faces2))
max_pixel = max(np.max(faces1), np.max(faces2))
faces1 = (faces1 - min_pixel) / (max_pixel - min_pixel)
faces2 = (faces2 - min_pixel) / (max_pixel - min_pixel)
# Convert labels to one-hot vectors
onehot_labels = []
for index in range(len(labels)):
if labels[index]:
onehot_labels.append([1, 0])
else:
onehot_labels.append([0, 1])
return faces1, faces2, np.array(onehot_labels)
示例6: main
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import load_data [as 別名]
def main(args):
with tf.Graph().as_default():
with tf.Session() as sess:
# create output directory if it doesn't exist
output_dir = os.path.expanduser(args.output_dir)
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
# load the model
print("Loading trained model...\n")
meta_file, ckpt_file = facenet.get_model_filenames(os.path.expanduser(args.trained_model_dir))
facenet.load_model(args.trained_model_dir, meta_file, ckpt_file)
# grab all image paths and labels
print("Finding image paths and targets...\n")
data = load_files(args.data_dir, load_content=False, shuffle=False)
labels_array = data['target']
paths = data['filenames']
# Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
image_size = images_placeholder.get_shape()[1]
embedding_size = embeddings.get_shape()[1]
# Run forward pass to calculate embeddings
print('Generating embeddings from images...\n')
start_time = time.time()
batch_size = args.batch_size
nrof_images = len(paths)
nrof_batches = int(np.ceil(1.0*nrof_images / batch_size))
emb_array = np.zeros((nrof_images, embedding_size))
for i in xrange(nrof_batches):
start_index = i*batch_size
end_index = min((i+1)*batch_size, nrof_images)
paths_batch = paths[start_index:end_index]
images = facenet.load_data(paths_batch, do_random_crop=False, do_random_flip=False, image_size=image_size, do_prewhiten=True)
feed_dict = { images_placeholder:images, phase_train_placeholder:False}
emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict)
time_avg_forward_pass = (time.time() - start_time) / float(nrof_images)
print("Forward pass took avg of %.3f[seconds/image] for %d images\n" % (time_avg_forward_pass, nrof_images))
print("Finally saving embeddings and gallery to: %s" % (output_dir))
# save the gallery and embeddings (signatures) as numpy arrays to disk
np.save(os.path.join(output_dir, "gallery.npy"), labels_array)
np.save(os.path.join(output_dir, "signatures.npy"), emb_array)