當前位置: 首頁>>代碼示例>>Python>>正文


Python facenet.get_model_filenames方法代碼示例

本文整理匯總了Python中facenet.get_model_filenames方法的典型用法代碼示例。如果您正苦於以下問題:Python facenet.get_model_filenames方法的具體用法?Python facenet.get_model_filenames怎麽用?Python facenet.get_model_filenames使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在facenet的用法示例。


在下文中一共展示了facenet.get_model_filenames方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import get_model_filenames [as 別名]
def main(args):
    with tf.Graph().as_default():
        with tf.Session() as sess:
            # Load the model metagraph and checkpoint
            print('Model directory: %s' % args.model_dir)
            meta_file, ckpt_file = facenet.get_model_filenames(os.path.expanduser(args.model_dir))
            
            print('Metagraph file: %s' % meta_file)
            print('Checkpoint file: %s' % ckpt_file)

            model_dir_exp = os.path.expanduser(args.model_dir)
            saver = tf.train.import_meta_graph(os.path.join(model_dir_exp, meta_file), clear_devices=True)
            tf.get_default_session().run(tf.global_variables_initializer())
            tf.get_default_session().run(tf.local_variables_initializer())
            saver.restore(tf.get_default_session(), os.path.join(model_dir_exp, ckpt_file))
            
            # Retrieve the protobuf graph definition and fix the batch norm nodes
            input_graph_def = sess.graph.as_graph_def()
            
            # Freeze the graph def
            output_graph_def = freeze_graph_def(sess, input_graph_def, 'embeddings,label_batch')

        # Serialize and dump the output graph to the filesystem
        with tf.gfile.GFile(args.output_file, 'wb') as f:
            f.write(output_graph_def.SerializeToString())
        print("%d ops in the final graph: %s" % (len(output_graph_def.node), args.output_file)) 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:28,代碼來源:freeze_graph.py

示例2: main

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import get_model_filenames [as 別名]
def main(args):
    """ Main

    Given a list of images, save out facial encoding data files and copy
    images into folders of face clusters.

    """
    from os.path import join, basename, exists
    from os import makedirs
    import numpy as np
    import shutil
    import sys

    if not exists(args.output):
        makedirs(args.output)

    with tf.Graph().as_default():
        with tf.Session() as sess:
            image_paths = get_onedir(args.input)
            #image_list, label_list = facenet.get_image_paths_and_labels(train_set)

            meta_file, ckpt_file = facenet.get_model_filenames(os.path.expanduser(args.model_dir))
            
            print('Metagraph file: %s' % meta_file)
            print('Checkpoint file: %s' % ckpt_file)
            load_model(args.model_dir, meta_file, ckpt_file)
            
            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
            phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
            
            image_size = images_placeholder.get_shape()[1]
            print("image_size:",image_size)
            embedding_size = embeddings.get_shape()[1]
        
            # Run forward pass to calculate embeddings
            print('Runnning forward pass on images') 

            nrof_images = len(image_paths)
            nrof_batches = int(math.ceil(1.0*nrof_images / args.batch_size))
            emb_array = np.zeros((nrof_images, embedding_size))
            facial_encodings = compute_facial_encodings(sess,images_placeholder,embeddings,phase_train_placeholder,image_size,
                embedding_size,nrof_images,nrof_batches,emb_array,args.batch_size,image_paths)
            sorted_clusters = cluster_facial_encodings(facial_encodings)
            num_cluster = len(sorted_clusters)
                
            # Copy image files to cluster folders
            for idx, cluster in enumerate(sorted_clusters):
                #save all the cluster
                cluster_dir = join(args.output, str(idx))
                if not exists(cluster_dir):
                    makedirs(cluster_dir)
                for path in cluster:
                    shutil.copy(path, join(cluster_dir, basename(path))) 
開發者ID:1024210879,項目名稱:facenet-demo,代碼行數:57,代碼來源:clustering.py

示例3: main

# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import get_model_filenames [as 別名]
def main(args):

	with tf.Graph().as_default():

		with tf.Session() as sess:

			# create output directory if it doesn't exist
			output_dir = os.path.expanduser(args.output_dir)
			if not os.path.isdir(output_dir):
				os.makedirs(output_dir)

			# load the model
			print("Loading trained model...\n")
			meta_file, ckpt_file = facenet.get_model_filenames(os.path.expanduser(args.trained_model_dir))
			facenet.load_model(args.trained_model_dir, meta_file, ckpt_file)

			# grab all image paths and labels
			print("Finding image paths and targets...\n")
			data = load_files(args.data_dir, load_content=False, shuffle=False)
			labels_array = data['target']
			paths = data['filenames']

			# Get input and output tensors
			images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
			embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
			phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")

			image_size = images_placeholder.get_shape()[1]
			embedding_size = embeddings.get_shape()[1]

			# Run forward pass to calculate embeddings
			print('Generating embeddings from images...\n')
			start_time = time.time()
			batch_size = args.batch_size
			nrof_images = len(paths)
			nrof_batches = int(np.ceil(1.0*nrof_images / batch_size))
			emb_array = np.zeros((nrof_images, embedding_size))
			for i in xrange(nrof_batches):
				start_index = i*batch_size
				end_index = min((i+1)*batch_size, nrof_images)
				paths_batch = paths[start_index:end_index]
				images = facenet.load_data(paths_batch, do_random_crop=False, do_random_flip=False, image_size=image_size, do_prewhiten=True)
				feed_dict = { images_placeholder:images, phase_train_placeholder:False}
				emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict)

			time_avg_forward_pass = (time.time() - start_time) / float(nrof_images)
			print("Forward pass took avg of %.3f[seconds/image] for %d images\n" % (time_avg_forward_pass, nrof_images))

			print("Finally saving embeddings and gallery to: %s" % (output_dir))
			# save the gallery and embeddings (signatures) as numpy arrays to disk
			np.save(os.path.join(output_dir, "gallery.npy"), labels_array)
			np.save(os.path.join(output_dir, "signatures.npy"), emb_array) 
開發者ID:1024210879,項目名稱:facenet-demo,代碼行數:54,代碼來源:batch_represent.py


注:本文中的facenet.get_model_filenames方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。