本文整理匯總了Python中facenet.get_dataset方法的典型用法代碼示例。如果您正苦於以下問題:Python facenet.get_dataset方法的具體用法?Python facenet.get_dataset怎麽用?Python facenet.get_dataset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類facenet
的用法示例。
在下文中一共展示了facenet.get_dataset方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import get_dataset [as 別名]
def main(args):
dataset = facenet.get_dataset(args.dir)
paths, _ = facenet.get_image_paths_and_labels(dataset)
t = np.zeros((len(paths)))
x = time.time()
for i, path in enumerate(paths):
start_time = time.time()
with open(path, mode='rb') as f:
_ = f.read()
duration = time.time() - start_time
t[i] = duration
if i % 1000 == 0 or i==len(paths)-1:
print('File %d/%d Total time: %.2f Avg: %.3f Std: %.3f' % (i, len(paths), time.time()-x, np.mean(t[0:i])*1000, np.std(t[0:i])*1000))
示例2: main
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import get_dataset [as 別名]
def main():
image_size = 96
old_dataset = '/home/david/datasets/facescrub/fs_aligned_new_oean/'
new_dataset = '/home/david/datasets/facescrub/facescrub_110_96/'
eq = 0
num = 0
l = []
dataset = facenet.get_dataset(old_dataset)
for cls in dataset:
new_class_dir = os.path.join(new_dataset, cls.name)
for image_path in cls.image_paths:
try:
filename = os.path.splitext(os.path.split(image_path)[1])[0]
new_filename = os.path.join(new_class_dir, filename+'.png')
#print(image_path)
if os.path.exists(new_filename):
a = facenet.load_data([image_path, new_filename], False, False, image_size, do_prewhiten=False)
if np.array_equal(a[0], a[1]):
eq+=1
num+=1
err = np.sum(np.square(np.subtract(a[0], a[1])))
#print(err)
l.append(err)
if err>2000:
fig = plt.figure(1)
p1 = fig.add_subplot(121)
p1.imshow(a[0])
p2 = fig.add_subplot(122)
p2.imshow(a[1])
print('%6.1f: %s\n' % (err, new_filename))
pass
else:
pass
#print('File not found: %s' % new_filename)
except:
pass
示例3: main
# 需要導入模塊: import facenet [as 別名]
# 或者: from facenet import get_dataset [as 別名]
def main(args):
funnel_cmd = 'funnelReal'
funnel_model = 'people.train'
output_dir = os.path.expanduser(args.output_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Store some git revision info in a text file in the output directory
src_path,_ = os.path.split(os.path.realpath(__file__))
facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv))
dataset = facenet.get_dataset(args.input_dir)
np.random.shuffle(dataset)
# Scale the image such that the face fills the frame when cropped to crop_size
#scale = float(args.face_size) / args.image_size
with TemporaryDirectory() as tmp_dir:
for cls in dataset:
output_class_dir = os.path.join(output_dir, cls.name)
tmp_output_class_dir = os.path.join(tmp_dir, cls.name)
if not os.path.exists(output_class_dir) and not os.path.exists(tmp_output_class_dir):
print('Aligning class %s:' % cls.name)
tmp_filenames = []
if not os.path.exists(tmp_output_class_dir):
os.makedirs(tmp_output_class_dir)
input_list_filename = os.path.join(tmp_dir, 'input_list.txt')
output_list_filename = os.path.join(tmp_dir, 'output_list.txt')
input_file = open(input_list_filename, 'w')
output_file = open(output_list_filename,'w')
for image_path in cls.image_paths:
filename = os.path.split(image_path)[1]
input_file.write(image_path+'\n')
output_filename = os.path.join(tmp_output_class_dir, filename)
output_file.write(output_filename+'\n')
tmp_filenames.append(output_filename)
input_file.close()
output_file.close()
cmd = args.funnel_dir+funnel_cmd + ' ' + input_list_filename + ' ' + args.funnel_dir+funnel_model + ' ' + output_list_filename
subprocess.call(cmd, shell=True)
# Resize and crop images
if not os.path.exists(output_class_dir):
os.makedirs(output_class_dir)
scale = 1.0
for tmp_filename in tmp_filenames:
img = misc.imread(tmp_filename)
img_scale = misc.imresize(img, scale)
sz1 = img.shape[1]/2
sz2 = args.image_size/2
img_crop = img_scale[int(sz1-sz2):int(sz1+sz2),int(sz1-sz2):int(sz1+sz2),:]
filename = os.path.splitext(os.path.split(tmp_filename)[1])[0]
output_filename = os.path.join(output_class_dir, filename+'.png')
print('Saving image %s' % output_filename)
misc.imsave(output_filename, img_crop)
# Remove tmp directory with images
shutil.rmtree(tmp_output_class_dir)