當前位置: 首頁>>代碼示例>>Python>>正文


Python evaluate.evaluate方法代碼示例

本文整理匯總了Python中evaluate.evaluate方法的典型用法代碼示例。如果您正苦於以下問題:Python evaluate.evaluate方法的具體用法?Python evaluate.evaluate怎麽用?Python evaluate.evaluate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在evaluate的用法示例。


在下文中一共展示了evaluate.evaluate方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: evaluate_ranker

# 需要導入模塊: import evaluate [as 別名]
# 或者: from evaluate import evaluate [as 別名]
def evaluate_ranker(self, iteration, ranker,
                      ranking_i, train_ranking,
                      ranking_labels):

    test_rankings = ranker.get_test_rankings(
                    self.datafold.test_feature_matrix,
                    self.datafold.test_doclist_ranges,
                    inverted=True)
    test_ndcg = evaluate(
                  test_rankings,
                  self.datafold.test_label_vector,
                  self.test_idcg_vector,
                  self.datafold.test_doclist_ranges.shape[0] - 1,
                  self.n_results)

    train_ndcg = evaluate_ranking(
            train_ranking,
            ranking_labels,
            self.train_idcg_vector[ranking_i],
            self.n_results)

    results = {
      'iteration': iteration,
      'heldout': np.mean(test_ndcg),
      'display': np.mean(train_ndcg),
    }

    for name, value in ranker.get_messages().items():
      results[name] = value

    return results 
開發者ID:HarrieO,項目名稱:OnlineLearningToRank,代碼行數:33,代碼來源:singlesimulation.py

示例2: run

# 需要導入模塊: import evaluate [as 別名]
# 或者: from evaluate import evaluate [as 別名]
def run(self, ranker, output_key):
    starttime = time.time()

    ranker.setup(train_features = self.datafold.train_feature_matrix,
                 train_query_ranges = self.datafold.train_doclist_ranges)

    run_results = []
    impressions = 0
    for impressions in range(self.n_impressions):
      ranking_i, train_ranking = self.sample_and_rank(ranker)
      ranking_labels = self.datafold.train_query_labels(ranking_i)
      clicks = self.click_model.generate_clicks(train_ranking, ranking_labels)
      self.timestep_evaluate(run_results, impressions, ranker,
                             ranking_i, train_ranking, ranking_labels)

      ranker.process_clicks(clicks)

    # evaluate after final iteration
    ranking_i, train_ranking = self.sample_and_rank(ranker)
    ranking_labels =  self.datafold.train_query_labels(ranking_i)
    impressions += 1
    self.timestep_evaluate(run_results, impressions, ranker,
                           ranking_i, train_ranking, ranking_labels)

    ranker.clean()

    self.run_details['runtime'] = time.time() - starttime

    output = {'run_details': self.run_details,
              'run_results': run_results}

    self.output_queue.put((output_key, output)) 
開發者ID:HarrieO,項目名稱:OnlineLearningToRank,代碼行數:34,代碼來源:singlesimulation.py

示例3: train

# 需要導入模塊: import evaluate [as 別名]
# 或者: from evaluate import evaluate [as 別名]
def train(rnn_trainer, rnn_predictor, train_data, valid_target_data, valid_source_data, dictionary,
          epoch_size, model_directory, beam_size, viterbi_size):
    start_time = time.time()
    log_path = os.path.join(model_directory, 'log.txt')
    log_file = open(log_path, 'w')
    best_epoch = None
    best_metrics = None

    for epoch in range(epoch_size):
        # Train one epoch and save the model
        train_epoch(rnn_trainer, train_data, model_directory, epoch)

        # Decode all sentences
        rnn_predictor.restore_from_directory(model_directory)
        system, decode_time = decode_all(rnn_predictor, valid_source_data, dictionary, beam_size, viterbi_size)

        # Evaluate results
        metrics = evaluate(system, valid_target_data)

        # Print metrics
        log_text = 'decoding precision: {:.2f} recall: {:.2f} f-score: {:.2f} accuracy: {:.2f}\n'.format(*metrics)
        log_text += 'decoding total time: {:.2f} average time: {:.2f}'.format(decode_time, decode_time / len(system))
        print(log_text)
        print(log_text, file=log_file)

        # Write decoded results to file
        decode_path = os.path.join(model_directory, 'decode-{}.txt'.format(epoch))
        with open(decode_path, 'w') as file:
            file.write('\n'.join(system))

        # Update best epoch
        if not best_epoch or best_metrics[2] < metrics[2]:
            best_epoch = epoch
            best_metrics = metrics

    total_time = time.time() - start_time
    print('best epoch:', best_epoch)
    print('best epoch metrics: precision: {:.2f} recall: {:.2f} f-score: {:.2f} accuracy: {:.2f}'.format(*best_metrics))
    print('total experiment time:', total_time)
    print()
    return best_metrics, best_epoch 
開發者ID:yohokuno,項目名稱:neural_ime,代碼行數:43,代碼來源:experiment.py

示例4: train_and_evaluate

# 需要導入模塊: import evaluate [as 別名]
# 或者: from evaluate import evaluate [as 別名]
def train_and_evaluate(model, train_data, val_data, optimizer, scheduler, params, model_dir, restore_file=None):
    """Train the model and evaluate every epoch."""
    # reload weights from restore_file if specified
    if restore_file is not None:
        restore_path = os.path.join(args.model_dir, args.restore_file + '.pth.tar')
        logging.info("Restoring parameters from {}".format(restore_path))
        utils.load_checkpoint(restore_path, model, optimizer)
        
    best_val_f1 = 0.0
    patience_counter = 0

    for epoch in range(1, params.epoch_num + 1):
        # Run one epoch
        logging.info("Epoch {}/{}".format(epoch, params.epoch_num))

        # Compute number of batches in one epoch
        params.train_steps = params.train_size // params.batch_size
        params.val_steps = params.val_size // params.batch_size

        # data iterator for training
        train_data_iterator = data_loader.data_iterator(train_data, shuffle=True)
        # Train for one epoch on training set
        train(model, train_data_iterator, optimizer, scheduler, params)

        # data iterator for evaluation
        train_data_iterator = data_loader.data_iterator(train_data, shuffle=False)
        val_data_iterator = data_loader.data_iterator(val_data, shuffle=False)

        # Evaluate for one epoch on training set and validation set
        params.eval_steps = params.train_steps
        train_metrics = evaluate(model, train_data_iterator, params, mark='Train')
        params.eval_steps = params.val_steps
        val_metrics = evaluate(model, val_data_iterator, params, mark='Val')
        
        val_f1 = val_metrics['f1']
        improve_f1 = val_f1 - best_val_f1

        # Save weights of the network
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        optimizer_to_save = optimizer.optimizer if args.fp16 else optimizer
        utils.save_checkpoint({'epoch': epoch + 1,
                               'state_dict': model_to_save.state_dict(),
                               'optim_dict': optimizer_to_save.state_dict()},
                               is_best=improve_f1>0,
                               checkpoint=model_dir)
        if improve_f1 > 0:
            logging.info("- Found new best F1")
            best_val_f1 = val_f1
            if improve_f1 < params.patience:
                patience_counter += 1
            else:
                patience_counter = 0
        else:
            patience_counter += 1

        # Early stopping and logging best f1
        if (patience_counter >= params.patience_num and epoch > params.min_epoch_num) or epoch == params.epoch_num:
            logging.info("Best val f1: {:05.2f}".format(best_val_f1))
            break 
開發者ID:lemonhu,項目名稱:NER-BERT-pytorch,代碼行數:61,代碼來源:train.py

示例5: train_rl_1

# 需要導入模塊: import evaluate [as 別名]
# 或者: from evaluate import evaluate [as 別名]
def train_rl_1(one2many_batch, model, optimizer, generator, opt, reward_cache):
    src_list, src_len, trg_list, _, trg_copy_target_list, src_oov_map_list, oov_list = one2many_batch

    if torch.cuda.is_available():
        src_list = src_list.cuda()
        src_oov_map_list = src_oov_map_list.cuda()

    # Sample number_batch sequences
    sampled_seqs_list = generator.sample(src_list, src_len, src_oov_map_list, oov_list, opt.word2id, k=5, is_greedy=False)

    policy_loss = []
    policy_rewards = []
    # Compute their rewards and losses
    for seq_i, (src, trg, trg_copy, sampled_seqs, oov) in enumerate(zip(src_list, trg_list, trg_copy_target_list, sampled_seqs_list, oov_list)):
        # convert to string sequences
        sampled_str_seqs = [[opt.id2word[x] if x < opt.vocab_size else oov[x - opt.vocab_size] for x in to_cpu_list(seq.sentence)] for seq in sampled_seqs]
        sampled_str_seqs = [seq[:seq.index(pykp.io.EOS_WORD) + 1] if pykp.io.EOS_WORD in seq else seq for seq in sampled_str_seqs]

        # pad trg seqs with EOS to the same length
        trg_seqs = [[opt.id2word[x] if x < opt.vocab_size else oov[x - opt.vocab_size] for x in seq] for seq in trg_copy]
        # trg_seqs            =  [seq + [pykp.IO.EOS_WORD] * (opt.max_sent_length - len(seq)) for seq in trg_seqs]

        # local rewards (bleu)
        bleu_samples = get_match_result(true_seqs=trg_seqs, pred_seqs=sampled_str_seqs, type='bleu')

        # global rewards
        match_samples = get_match_result(true_seqs=trg_seqs, pred_seqs=sampled_str_seqs, type='exact')

        _, _, fscore_samples = evaluate.evaluate(match_samples, sampled_str_seqs, trg_seqs, topk=5)

        # compute the final rewards
        alpha = 0.0
        rewards = alpha * np.asarray(bleu_samples) + (1.0 - alpha) * fscore_samples
        baseline = reward_cache.get_average()
        for reward in rewards:
            reward_cache.push(float(reward))

        [policy_loss.append(-torch.stack(seq.logprobs, dim=0).sum() * float(reward - baseline)) for seq, reward in zip(sampled_seqs, rewards)]
        [policy_rewards.append(reward) for reward in rewards]

    optimizer.zero_grad()
    policy_loss = torch.stack(policy_loss).mean() * (1 - opt.loss_scale)
    policy_loss.backward()

    if opt.max_grad_norm > 0:
        pre_norm = torch.nn.utils.clip_grad_norm(model.parameters(), opt.max_grad_norm)
        after_norm = (sum([p.grad.data.norm(2) ** 2 for p in model.parameters() if p.grad is not None])) ** (1.0 / 2)
        # logging.info('clip grad (%f -> %f)' % (pre_norm, after_norm))

    optimizer.step()
    return np.average(policy_rewards) 
開發者ID:memray,項目名稱:seq2seq-keyphrase-pytorch,代碼行數:53,代碼來源:train.py

示例6: train

# 需要導入模塊: import evaluate [as 別名]
# 或者: from evaluate import evaluate [as 別名]
def train(model: nn.Module,
          optimizer: optim,
          loss_fn,
          train_loader: DataLoader,
          test_loader: DataLoader,
          params: utils.Params,
          epoch: int) -> float:
    '''Train the model on one epoch by batches.
    Args:
        model: (torch.nn.Module) the neural network
        optimizer: (torch.optim) optimizer for parameters of model
        loss_fn: a function that takes outputs and labels per timestep, and then computes the loss for the batch
        train_loader: load train data and labels
        test_loader: load test data and labels
        params: (Params) hyperparameters
        epoch: (int) the current training epoch
    '''
    model.train()
    loss_epoch = np.zeros(len(train_loader))
    # Train_loader:
    # train_batch ([batch_size, train_window, 1+cov_dim]): z_{0:T-1} + x_{1:T}, note that z_0 = 0;
    # idx ([batch_size]): one integer denoting the time series id;
    # labels_batch ([batch_size, train_window]): z_{1:T}.
    for i, (train_batch, idx, labels_batch) in enumerate(tqdm(train_loader)):
        optimizer.zero_grad()
        batch_size = train_batch.shape[0]

        train_batch = train_batch.permute(1, 0, 2).to(torch.float32).to(params.device)  # not scaled
        labels_batch = labels_batch.permute(1, 0).to(torch.float32).to(params.device)  # not scaled
        idx = idx.unsqueeze(0).to(params.device)

        loss = torch.zeros(1, device=params.device)
        hidden = model.init_hidden(batch_size)
        cell = model.init_cell(batch_size)

        for t in range(params.train_window):
            # if z_t is missing, replace it by output mu from the last time step
            zero_index = (train_batch[t, :, 0] == 0)
            if t > 0 and torch.sum(zero_index) > 0:
                train_batch[t, zero_index, 0] = mu[zero_index]
            mu, sigma, hidden, cell = model(train_batch[t].unsqueeze_(0).clone(), idx, hidden, cell)
            loss += loss_fn(mu, sigma, labels_batch[t])

        loss.backward()
        optimizer.step()
        loss = loss.item() / params.train_window  # loss per timestep
        loss_epoch[i] = loss
        if i % 1000 == 0:
            test_metrics = evaluate(model, loss_fn, test_loader, params, epoch, sample=args.sampling)
            model.train()
            logger.info(f'train_loss: {loss}')
        if i == 0:
            logger.info(f'train_loss: {loss}')
    return loss_epoch 
開發者ID:zhykoties,項目名稱:TimeSeries,代碼行數:56,代碼來源:train.py

示例7: train_and_evaluate

# 需要導入模塊: import evaluate [as 別名]
# 或者: from evaluate import evaluate [as 別名]
def train_and_evaluate(model, train_data, val_data, optimizer, scheduler, params, metric_labels, model_dir, restore_file=None):
    """Train the model and evaluate every epoch."""
    # reload weights from restore_file if specified
    if restore_file is not None:
        restore_path = os.path.join(args.model_dir, args.restore_file + '.pth.tar')
        logging.info("Restoring parameters from {}".format(restore_path))
        utils.load_checkpoint(restore_path, model, optimizer)
        
    best_val_f1 = 0.0
    patience_counter = 0

    for epoch in range(1, params.epoch_num + 1):
        # Run one epoch
        logging.info("Epoch {}/{}".format(epoch, params.epoch_num))

        # Compute number of batches in one epoch
        train_steps_num = params.train_size // params.batch_size
        val_steps_num = params.val_size // params.batch_size

        # data iterator for training
        train_data_iterator = data_loader.data_iterator(train_data, params.batch_size, shuffle='True')
        # Train for one epoch on training set
        train_loss = train(model, train_data_iterator, optimizer, scheduler, params, train_steps_num)

        # data iterator for training and validation
        train_data_iterator = data_loader.data_iterator(train_data, params.batch_size)
        val_data_iterator = data_loader.data_iterator(val_data, params.batch_size)

        # Evaluate for one epoch on training set and validation set
        train_metrics = evaluate(model, train_data_iterator, train_steps_num, metric_labels)
        train_metrics['loss'] = train_loss
        train_metrics_str = "; ".join("{}: {:05.2f}".format(k, v) for k, v in train_metrics.items())
        logging.info("- Train metrics: " + train_metrics_str)
        
        val_metrics = evaluate(model, val_data_iterator, val_steps_num, metric_labels)
        val_metrics_str = "; ".join("{}: {:05.2f}".format(k, v) for k, v in val_metrics.items())
        logging.info("- Eval metrics: " + val_metrics_str)
        
        val_f1 = val_metrics['f1']
        improve_f1 = val_f1 - best_val_f1

        # Save weights ot the network
        utils.save_checkpoint({'epoch': epoch + 1,
                               'state_dict': model.state_dict(),
                               'optim_dict' : optimizer.state_dict()}, 
                               is_best=improve_f1>0,
                               checkpoint=model_dir)
        if improve_f1 > 0:
            logging.info("- Found new best F1")
            best_val_f1 = val_f1
            if improve_f1 < params.patience:
                patience_counter += 1
            else:
                patience_counter = 0
        else:
            patience_counter += 1

        # Early stopping and logging best f1
        if (patience_counter >= params.patience_num and epoch > params.min_epoch_num) or epoch == params.epoch_num:
            logging.info("best val f1: {:05.2f}".format(best_val_f1))
            break 
開發者ID:lemonhu,項目名稱:RE-CNN-pytorch,代碼行數:63,代碼來源:train.py


注:本文中的evaluate.evaluate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。