當前位置: 首頁>>代碼示例>>Python>>正文


Python eulerangles.euler2mat方法代碼示例

本文整理匯總了Python中eulerangles.euler2mat方法的典型用法代碼示例。如果您正苦於以下問題:Python eulerangles.euler2mat方法的具體用法?Python eulerangles.euler2mat怎麽用?Python eulerangles.euler2mat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在eulerangles的用法示例。


在下文中一共展示了eulerangles.euler2mat方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: draw_point_cloud

# 需要導入模塊: import eulerangles [as 別名]
# 或者: from eulerangles import euler2mat [as 別名]
def draw_point_cloud(input_points, canvasSize=500, space=200, diameter=25,
                     xrot=0, yrot=0, zrot=0, switch_xyz=[0,1,2], normalize=True):
    """ Render point cloud to image with alpha channel.
        Input:
            points: Nx3 numpy array (+y is up direction)
        Output:
            gray image as numpy array of size canvasSizexcanvasSize
    """
    image = np.zeros((canvasSize, canvasSize))
    if input_points is None or input_points.shape[0] == 0:
        return image

    points = input_points[:, switch_xyz]
    M = euler2mat(zrot, yrot, xrot)
    points = (np.dot(M, points.transpose())).transpose()

    # Normalize the point cloud
    # We normalize scale to fit points in a unit sphere
    if normalize:
        centroid = np.mean(points, axis=0)
        points -= centroid
        furthest_distance = np.max(np.sqrt(np.sum(abs(points)**2,axis=-1)))
        points /= furthest_distance

    # Pre-compute the Gaussian disk
    radius = (diameter-1)/2.0
    disk = np.zeros((diameter, diameter))
    for i in range(diameter):
        for j in range(diameter):
            if (i - radius) * (i-radius) + (j-radius) * (j-radius) <= radius * radius:
                disk[i, j] = np.exp((-(i-radius)**2 - (j-radius)**2)/(radius**2))
    mask = np.argwhere(disk > 0)
    dx = mask[:, 0]
    dy = mask[:, 1]
    dv = disk[disk > 0]
    
    # Order points by z-buffer
    zorder = np.argsort(points[:, 2])
    points = points[zorder, :]
    points[:, 2] = (points[:, 2] - np.min(points[:, 2])) / (np.max(points[:, 2] - np.min(points[:, 2])))
    max_depth = np.max(points[:, 2])
       
    for i in range(points.shape[0]):
        j = points.shape[0] - i - 1
        x = points[j, 0]
        y = points[j, 1]
        xc = canvasSize/2 + (x*space)
        yc = canvasSize/2 + (y*space)
        xc = int(np.round(xc))
        yc = int(np.round(yc))
        
        px = dx + xc
        py = dy + yc
        
        image[px, py] = image[px, py] * 0.7 + dv * (max_depth - points[j, 2]) * 0.3
    
    image = image / np.max(image)
    return image 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:60,代碼來源:pc_util.py

示例2: draw_point_cloud

# 需要導入模塊: import eulerangles [as 別名]
# 或者: from eulerangles import euler2mat [as 別名]
def draw_point_cloud(input_points, canvasSize=500, space=200, diameter=25,
                     xrot=0, yrot=0, zrot=0, switch_xyz=[0, 1, 2], normalize=True):
    """ Render point cloud to image with alpha channel.
        Input:
            points: Nx3 numpy array (+y is up direction)
        Output:
            gray image as numpy array of size canvasSizexcanvasSize
    """
    image = np.zeros((canvasSize, canvasSize))
    if input_points is None or input_points.shape[0] == 0:
        return image

    points = input_points[:, switch_xyz]
    M = euler2mat(zrot, yrot, xrot)
    points = (np.dot(M, points.transpose())).transpose()

    # Normalize the point cloud
    # We normalize scale to fit points in a unit sphere
    if normalize:
        centroid = np.mean(points, axis=0)
        points -= centroid
        furthest_distance = np.max(np.sqrt(np.sum(abs(points) ** 2, axis=-1)))
        points /= furthest_distance

    # Pre-compute the Gaussian disk
    radius = (diameter - 1) / 2.0
    disk = np.zeros((diameter, diameter))
    for i in range(diameter):
        for j in range(diameter):
            if (i - radius) * (i - radius) + (j - radius) * (j - radius) <= radius * radius:
                disk[i, j] = np.exp((-(i - radius) ** 2 - (j - radius) ** 2) / (radius ** 2))
    mask = np.argwhere(disk > 0)
    dx = mask[:, 0]
    dy = mask[:, 1]
    dv = disk[disk > 0]

    # Order points by z-buffer
    zorder = np.argsort(points[:, 2])
    points = points[zorder, :]
    points[:, 2] = (points[:, 2] - np.min(points[:, 2])) / (np.max(points[:, 2] - np.min(points[:, 2])))
    max_depth = np.max(points[:, 2])

    for i in range(points.shape[0]):
        j = points.shape[0] - i - 1
        x = points[j, 0]
        y = points[j, 1]
        xc = canvasSize / 2 + (x * space)
        yc = canvasSize / 2 + (y * space)
        xc = int(np.round(xc))
        yc = int(np.round(yc))

        px = dx + xc
        py = dy + yc

        image[px, py] = image[px, py] * 0.7 + dv * (max_depth - points[j, 2]) * 0.3

    image = image / np.max(image)
    return image 
開發者ID:hkust-vgd,項目名稱:scanobjectnn,代碼行數:60,代碼來源:pc_util.py


注:本文中的eulerangles.euler2mat方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。