當前位置: 首頁>>代碼示例>>Python>>正文


Python errorcounter.AddErrors方法代碼示例

本文整理匯總了Python中errorcounter.AddErrors方法的典型用法代碼示例。如果您正苦於以下問題:Python errorcounter.AddErrors方法的具體用法?Python errorcounter.AddErrors怎麽用?Python errorcounter.AddErrors使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在errorcounter的用法示例。


在下文中一共展示了errorcounter.AddErrors方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: SoftmaxEval

# 需要導入模塊: import errorcounter [as 別名]
# 或者: from errorcounter import AddErrors [as 別名]
def SoftmaxEval(self, sess, model, num_steps):
    """Evaluate a model in softmax mode.

    Adds char, word recall and sequence error rate events to the sw summary
    writer, and returns them as well
    TODO(rays) Add LogisticEval.
    Args:
      sess:  A tensor flow Session.
      model: The model to run in the session. Requires a VGSLImageModel or any
        other class that has a using_ctc attribute and a RunAStep(sess) method
        that reurns a softmax result with corresponding labels.
      num_steps: Number of steps to evaluate for.
    Returns:
      ErrorRates named tuple.
    Raises:
      ValueError: If an unsupported number of dimensions is used.
    """
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    # Run the requested number of evaluation steps, gathering the outputs of the
    # softmax and the true labels of the evaluation examples.
    total_label_counts = ec.ErrorCounts(0, 0, 0, 0)
    total_word_counts = ec.ErrorCounts(0, 0, 0, 0)
    sequence_errors = 0
    for _ in xrange(num_steps):
      softmax_result, labels = model.RunAStep(sess)
      # Collapse softmax to same shape as labels.
      predictions = softmax_result.argmax(axis=-1)
      # Exclude batch from num_dims.
      num_dims = len(predictions.shape) - 1
      batch_size = predictions.shape[0]
      null_label = softmax_result.shape[-1] - 1
      for b in xrange(batch_size):
        if num_dims == 2:
          # TODO(rays) Support 2-d data.
          raise ValueError('2-d label data not supported yet!')
        else:
          if num_dims == 1:
            pred_batch = predictions[b, :]
            labels_batch = labels[b, :]
          else:
            pred_batch = [predictions[b]]
            labels_batch = [labels[b]]
          text = self.StringFromCTC(pred_batch, model.using_ctc, null_label)
          truth = self.StringFromCTC(labels_batch, False, null_label)
          # Note that recall_errs is false negatives (fn) aka drops/deletions.
          # Actual recall would be 1-fn/truth_words.
          # Likewise precision_errs is false positives (fp) aka adds/insertions.
          # Actual precision would be 1-fp/ocr_words.
          total_word_counts = ec.AddErrors(total_word_counts,
                                           ec.CountWordErrors(text, truth))
          total_label_counts = ec.AddErrors(total_label_counts,
                                            ec.CountErrors(text, truth))
          if text != truth:
            sequence_errors += 1

    coord.request_stop()
    coord.join(threads)
    return ec.ComputeErrorRates(total_label_counts, total_word_counts,
                                sequence_errors, num_steps * batch_size) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:62,代碼來源:decoder.py


注:本文中的errorcounter.AddErrors方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。