當前位置: 首頁>>代碼示例>>Python>>正文


Python envs.create_env方法代碼示例

本文整理匯總了Python中envs.create_env方法的典型用法代碼示例。如果您正苦於以下問題:Python envs.create_env方法的具體用法?Python envs.create_env怎麽用?Python envs.create_env使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在envs的用法示例。


在下文中一共展示了envs.create_env方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_penalty_env

# 需要導入模塊: import envs [as 別名]
# 或者: from envs import create_env [as 別名]
def test_penalty_env(env):
    import envs
    env = envs.create_env("Pong", location="bottom", catastrophe_type="1", 
                          classifier_file=save_classifier_path + '/0/final.ckpt')
    
    import matplotlib.pyplot as plt

    observation = env.reset()
    
    for _ in range(20):
        action = env.action_space.sample()
        observation, reward, done, info = env.step(action)
        plt.imshow(observation[:,:,0])
        plt.show()
        print('Cat: ', info['frame/is_catastrophe'])
        print('reward: ', reward)
        if done:
            break 
開發者ID:gsastry,項目名稱:human-rl,代碼行數:20,代碼來源:test_pipeline.py

示例2: run

# 需要導入模塊: import envs [as 別名]
# 或者: from envs import create_env [as 別名]
def run(args):
    env = create_env(args.env_id)
    trainer = A3C(env, None, args.visualise, args.intrinsic_type, args.bptt)

    # Variable names that start with "local" are not saved in checkpoints.
    variables_to_save = [v for v in tf.global_variables() if not v.name.startswith("local")]
    init_op = tf.variables_initializer(variables_to_save)
    init_all_op = tf.global_variables_initializer()
    saver = FastSaver(variables_to_save)

    var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name)
    logger.info('Trainable vars:')
    for v in var_list:
        logger.info('  %s %s', v.name, v.get_shape())

    def init_fn(ses):
        logger.info("Initializing all parameters.")
        ses.run(init_all_op)

    logdir = os.path.join(args.log_dir, 'train')
    summary_writer = tf.summary.FileWriter(logdir)
    logger.info("Events directory: %s", logdir)

    sv = tf.train.Supervisor(is_chief=True,
                             logdir=logdir,
                             saver=saver,
                             summary_op=None,
                             init_op=init_op,
                             init_fn=init_fn,
                             summary_writer=summary_writer,
                             ready_op=tf.report_uninitialized_variables(variables_to_save),
                             global_step=None,
                             save_model_secs=0,
                             save_summaries_secs=0)

    video_dir = os.path.join(args.log_dir, 'test_videos_' + args.intrinsic_type)
    if not os.path.exists(video_dir):
        os.makedirs(video_dir)
    video_filename = video_dir + "/%s_%02d_%d.gif"
    print("Video saved at %s" % video_dir)

    with sv.managed_session() as sess, sess.as_default():
        trainer.start(sess, summary_writer)
        rewards = []
        lengths = []
        for i in range(10):
            frames, reward, length = trainer.evaluate(sess)
            rewards.append(reward)
            lengths.append(length)
            imageio.mimsave(video_filename % (args.env_id, i, reward), frames, fps=30)

        print('Evaluation: avg. reward %.2f    avg.length %.2f' %
              (sum(rewards) / 10.0, sum(lengths) / 10.0))

    # Ask for all the services to stop.
    sv.stop() 
開發者ID:clvrai,項目名稱:FeatureControlHRL-Tensorflow,代碼行數:58,代碼來源:test.py


注:本文中的envs.create_env方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。