當前位置: 首頁>>代碼示例>>Python>>正文


Python environment.Environment方法代碼示例

本文整理匯總了Python中environment.Environment方法的典型用法代碼示例。如果您正苦於以下問題:Python environment.Environment方法的具體用法?Python environment.Environment怎麽用?Python environment.Environment使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在environment的用法示例。


在下文中一共展示了environment.Environment方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import environment [as 別名]
# 或者: from environment import Environment [as 別名]
def __init__(self, is_running_in_docker, script_dir="demo_scripts", filename="README.md", is_simulation=True, is_automated=False, is_testing=False, is_fast_fail=True,is_learning = False, parent_script_dir = None, is_prep_only = False, is_prerequisite = False, output_format="log"):
        """
        is_running_in_docker should be set to true is we are running inside a Docker container
        script_dir is the location to look for scripts
        filename is the filename of the script this demo represents
        is_simulation should be set to true if we want to simulate a human running the commands
        is_automated should be set to true if we don't want to wait for an operator to indicate it's time to execute the next command
        is_testing is set to true if we want to compare actual results with expected results, by default execution will stop if any test fails (see is_fast_fail)
        is_fast_fail should be set to true if we want to contnue running tests even after a failure
        is_learning should be set to true if we want a human to type in the commands
        parent_script_dir should be the directory of the script that calls this one, or None if this is the root script
        is_prep_only should be set to true if we want to stop execution after all prerequisites are satsified
        is_prerequisite indicates whether this is a prerequisite or not. It is used to decide behaviour with respect to simulation etc.
        """
        self.mode = None
        self.is_docker = is_running_in_docker
        self.filename = filename
        self.script_dir = ""
        self.set_script_dir(script_dir)
        self.is_simulation = is_simulation
        self.is_automated = is_automated
        self.is_testing = is_testing
        self.is_fast_fail = is_fast_fail
        self.is_learning = is_learning
        self.current_command = ""
        self.current_description = ""
        self.last_command = ""
        self.is_prep_only = is_prep_only
        self.parent_script_dir = parent_script_dir
        if self.parent_script_dir:
            self.env = Environment(self.parent_script_dir, is_test = self.is_testing)
        else:
            self.env = Environment(self.script_dir, is_test = self.is_testing)
        self.is_prerequisite = is_prerequisite
        self.output_format = output_format
        self.all_results = []
        self.completed_validation_steps = [] 
開發者ID:Azure,項目名稱:simdem,代碼行數:39,代碼來源:demo.py

示例2: get_bash_script

# 需要導入模塊: import environment [as 別名]
# 或者: from environment import Environment [as 別名]
def get_bash_script(script_dir, is_simulation = True, is_automated=False, is_testing=False):
    """
    Reads a README.md file in the indicated directoy and builds an
    executable bash script from the commands contained within.
    """
    if not script_dir.endswith('/'):
        script_dir = script_dir + "/"

    script = ""
    env = Environment(script_dir, False).get()
    for key, value in env.items():
        script += key + "='" + value + "'\n"

    filename = env.get_script_file_name(script_dir)
    in_code_block = False
    in_results_section = False
    lines = list(open(script_dir + filename))
    for line in lines:
        if line.startswith("Results:"):
            # Entering results section
            in_results_section = True
        elif line.startswith("```") and not in_code_block:
            # Entering a code block, if in_results_section = True then it's a results block
            in_code_block = True
        elif line.startswith("```") and in_code_block:
            # Finishing code block
            in_results_section = False
            in_code_block = False
        elif in_code_block and not in_results_section:
            # Executable line
            script += line
        elif line.startswith("#") and not in_code_block and not in_results_section and not is_automated:
            # Heading in descriptive text
            script += "\n"
    return script 
開發者ID:Azure,項目名稱:simdem,代碼行數:37,代碼來源:main.py

示例3: run

# 需要導入模塊: import environment [as 別名]
# 或者: from environment import Environment [as 別名]
def run(args):
    if args.train_pg:
        env_name = args.env_name or 'Pong-v0'
        env = Environment(env_name, args)
        from agent_dir.agent_pg import Agent_PG
        agent = Agent_PG(env, args)
        agent.train()

    if args.test_pg:
        env = Environment('Pong-v0', args, test=True)
        from agent_dir.agent_pg import Agent_PG
        agent = Agent_PG(env, args)
        test(agent, env)

    # Experiment on Cartpole only, test unsupported
    if args.train_ac:
        env_name = args.env_name or 'CartPole-v0'
        env = Environment(env_name, args)
        from agent_dir.agent_actorcritic import Agent_ActorCritic
        agent = Agent_ActorCritic(env, args)
        agent.train()
    if args.train_pgc:
        env_name = args.env_name or 'CartPole-v0'
        env = Environment(env_name, args)
        from agent_dir.agent_pg_cart import Agent_PGC
        agent = Agent_PGC(env, args)
        agent.train() 
開發者ID:Alexander-H-Liu,項目名稱:Policy-Gradient-and-Actor-Critic-Keras,代碼行數:29,代碼來源:main.py

示例4: run

# 需要導入模塊: import environment [as 別名]
# 或者: from environment import Environment [as 別名]
def run(args):
    if args.test_pg:
        env = Environment('Pong-v0', args, test=True)
        from agent_dir.agent_pg import Agent_PG
        agent = Agent_PG(env, args)
        test(agent, env) 
開發者ID:Alexander-H-Liu,項目名稱:Policy-Gradient-and-Actor-Critic-Keras,代碼行數:8,代碼來源:test.py

示例5: __init__

# 需要導入模塊: import environment [as 別名]
# 或者: from environment import Environment [as 別名]
def __init__(self, rl_method='rl', stock_code=None, 
                chart_data=None, training_data=None,
                min_trading_unit=1, max_trading_unit=2, 
                delayed_reward_threshold=.05,
                net='dnn', num_steps=1, lr=0.001,
                value_network=None, policy_network=None,
                output_path='', reuse_models=True):
        # 인자 확인
        assert min_trading_unit > 0
        assert max_trading_unit > 0
        assert max_trading_unit >= min_trading_unit
        assert num_steps > 0
        assert lr > 0
        # 강화학습 기법 설정
        self.rl_method = rl_method
        # 환경 설정
        self.stock_code = stock_code
        self.chart_data = chart_data
        self.environment = Environment(chart_data)
        # 에이전트 설정
        self.agent = Agent(self.environment,
                    min_trading_unit=min_trading_unit,
                    max_trading_unit=max_trading_unit,
                    delayed_reward_threshold=delayed_reward_threshold)
        # 학습 데이터
        self.training_data = training_data
        self.sample = None
        self.training_data_idx = -1
        # 벡터 크기 = 학습 데이터 벡터 크기 + 에이전트 상태 크기
        self.num_features = self.agent.STATE_DIM
        if self.training_data is not None:
            self.num_features += self.training_data.shape[1]
        # 신경망 설정
        self.net = net
        self.num_steps = num_steps
        self.lr = lr
        self.value_network = value_network
        self.policy_network = policy_network
        self.reuse_models = reuse_models
        # 가시화 모듈
        self.visualizer = Visualizer()
        # 메모리
        self.memory_sample = []
        self.memory_action = []
        self.memory_reward = []
        self.memory_value = []
        self.memory_policy = []
        self.memory_pv = []
        self.memory_num_stocks = []
        self.memory_exp_idx = []
        self.memory_learning_idx = []
        # 에포크 관련 정보
        self.loss = 0.
        self.itr_cnt = 0
        self.exploration_cnt = 0
        self.batch_size = 0
        self.learning_cnt = 0
        # 로그 등 출력 경로
        self.output_path = output_path 
開發者ID:quantylab,項目名稱:rltrader,代碼行數:61,代碼來源:learners.py


注:本文中的environment.Environment方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。