本文整理匯總了Python中emcee.EnsembleSampler方法的典型用法代碼示例。如果您正苦於以下問題:Python emcee.EnsembleSampler方法的具體用法?Python emcee.EnsembleSampler怎麽用?Python emcee.EnsembleSampler使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類emcee
的用法示例。
在下文中一共展示了emcee.EnsembleSampler方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: fit_hyperparams
# 需要導入模塊: import emcee [as 別名]
# 或者: from emcee import EnsembleSampler [as 別名]
def fit_hyperparams(self,printOut=False):
if self.modelp.fitType=='mle':
spo.minimize(self.neg_log_like, self.model.get_parameter_vector(),
jac=True)
elif self.modelp.fitType=='bayes':
self.nburnin = 200
nsamp = 200
nwalkers = 36
gpdim = len(self.model)
self.sampler = emcee.EnsembleSampler(nwalkers, gpdim, self.log_post)
p0 = self.model.get_parameter_vector() + 1e-4*np.random.randn(nwalkers,
gpdim)
print 'Running burn-in.'
p0, _, _ = self.sampler.run_mcmc(p0, self.nburnin)
print 'Running main chain.'
self.sampler.run_mcmc(p0, nsamp)
if printOut:
print 'Final GP hyperparam (in opt or MCMC chain):'
print self.model.get_parameter_dict()
示例2: sample_representer_points
# 需要導入模塊: import emcee [as 別名]
# 或者: from emcee import EnsembleSampler [as 別名]
def sample_representer_points(self):
self.sampling_acquisition.update(self.model)
for i in range(5):
restarts = np.zeros((self.Nb, self.D))
restarts[0:self.Nb, ] = self.lower + (self.upper - self.lower) \
* self.rng.uniform(size=(self.Nb, self.D))
sampler = emcee.EnsembleSampler(
self.Nb, self.D, self.sampling_acquisition_wrapper)
# zb are the representer points and lmb are their log EI values
self.zb, self.lmb, _ = sampler.run_mcmc(restarts, 50)
if not np.any(np.isinf(self.lmb)):
break
else:
print("Infinity")
if len(self.zb.shape) == 1:
self.zb = self.zb[:, None]
if len(self.lmb.shape) == 1:
self.lmb = self.lmb[:, None]
示例3: sample_representer_points
# 需要導入模塊: import emcee [as 別名]
# 或者: from emcee import EnsembleSampler [as 別名]
def sample_representer_points(self):
self.sampling_acquisition.update(self.model)
start_points = init_random_uniform(self.lower, self.upper, self.Nb)
sampler = emcee.EnsembleSampler(self.Nb,
self.D,
self.sampling_acquisition_wrapper)
# zb are the representer points and lmb are their log EI values
self.zb, self.lmb, _ = sampler.run_mcmc(start_points, 200)
if len(self.zb.shape) == 1:
self.zb = self.zb[:, None]
if len(self.lmb.shape) == 1:
self.lmb = self.lmb[:, None]
示例4: __init__
# 需要導入模塊: import emcee [as 別名]
# 或者: from emcee import EnsembleSampler [as 別名]
def __init__(self, model, nwalkers, pool=None,
model_call=None):
try:
import emcee
except ImportError:
raise ImportError("emcee is not installed.")
if model_call is None:
model_call = model
ndim = len(model.variable_params)
sampler = emcee.EnsembleSampler(nwalkers, ndim,
model_call,
pool=pool)
# emcee uses it's own internal random number generator; we'll set it
# to have the same state as the numpy generator
rstate = numpy.random.get_state()
sampler.random_state = rstate
# initialize
super(EmceeEnsembleSampler, self).__init__(
sampler, model)
self._nwalkers = nwalkers
示例5: sample_representer_points
# 需要導入模塊: import emcee [as 別名]
# 或者: from emcee import EnsembleSampler [as 別名]
def sample_representer_points(self):
# Sample representer points only in the
# configuration space by setting all environmental
# variables to 1
D = np.where(self.is_env == 0)[0].shape[0]
lower = self.lower[np.where(self.is_env == 0)]
upper = self.upper[np.where(self.is_env == 0)]
self.sampling_acquisition.update(self.model)
for i in range(5):
restarts = np.random.uniform(low=lower,
high=upper,
size=(self.Nb, D))
sampler = emcee.EnsembleSampler(self.Nb, D,
self.sampling_acquisition_wrapper)
self.zb, self.lmb, _ = sampler.run_mcmc(restarts, 50)
if not np.any(np.isinf(self.lmb)):
break
else:
print("Infinity")
if np.any(np.isinf(self.lmb)):
raise ValueError("Could not sample valid representer points! LogEI is -infinity")
if len(self.zb.shape) == 1:
self.zb = self.zb[:, None]
if len(self.lmb.shape) == 1:
self.lmb = self.lmb[:, None]
# Project representer points to subspace
proj = np.ones([self.zb.shape[0],
self.upper[self.is_env == 1].shape[0]])
proj *= self.upper[self.is_env == 1].shape[0]
self.zb = np.concatenate((self.zb, proj), axis=1)
示例6: emcee_schools_model
# 需要導入模塊: import emcee [as 別名]
# 或者: from emcee import EnsembleSampler [as 別名]
def emcee_schools_model(data, draws, chains):
"""Schools model in emcee."""
import emcee
chains = 10 * chains # emcee is sad with too few walkers
y = data["y"]
sigma = data["sigma"]
J = data["J"] # pylint: disable=invalid-name
ndim = J + 2
pos = np.random.normal(size=(chains, ndim))
pos[:, 1] = np.absolute(pos[:, 1]) # pylint: disable=unsupported-assignment-operation
if emcee_version() < 3:
sampler = emcee.EnsembleSampler(chains, ndim, _emcee_lnprob, args=(y, sigma))
# pylint: enable=unexpected-keyword-arg
sampler.run_mcmc(pos, draws)
else:
here = os.path.dirname(os.path.abspath(__file__))
data_directory = os.path.join(here, "saved_models")
filepath = os.path.join(data_directory, "reader_testfile.h5")
backend = emcee.backends.HDFBackend(filepath) # pylint: disable=no-member
backend.reset(chains, ndim)
# pylint: disable=unexpected-keyword-arg
sampler = emcee.EnsembleSampler(
chains, ndim, _emcee_lnprob, args=(y, sigma), backend=backend
)
# pylint: enable=unexpected-keyword-arg
sampler.run_mcmc(pos, draws, store=True)
return sampler
# pylint:disable=no-member,no-value-for-parameter,invalid-name
示例7: get_samples
# 需要導入模塊: import emcee [as 別名]
# 或者: from emcee import EnsembleSampler [as 別名]
def get_samples(self, n_samples, log_p_function, burn_in_steps=50, n_steps=100):
"""
Generates samples.
Parameters:
n_samples - number of samples to generate
log_p_function - a function that returns log density for a specific sample
burn_in_steps - number of burn-in steps for sampling
Returns a tuple of two array: (samples, log_p_function values for samples)
"""
X_init = self.space.sample_uniform(n_samples)
sampler = emcee.EnsembleSampler(n_samples, X_init.shape[1], log_p_function)
# Burn-In
state = list(sampler.run_mcmc(X_init, burn_in_steps)) # compatible with both emcee 2 and 3
samples = state[0]
samples_log = state[1]
# MCMC Sampling
state = list(sampler.run_mcmc(samples, n_steps))
samples = state[0]
samples_log = state[1]
# make sure we have an array of shape (n samples, space input dim)
if len(samples.shape) == 1:
samples = samples.reshape(-1, 1)
samples_log = samples_log.reshape(-1, 1)
return samples, samples_log
示例8: __init__
# 需要導入模塊: import emcee [as 別名]
# 或者: from emcee import EnsembleSampler [as 別名]
def __init__(self, ntemps, nwalkers, dim, logl, logp, threads=1,
pool=None, betas=None):
self.logl = logl
self.logp = logp
self.ntemps = ntemps
self.nwalkers = nwalkers
self.dim = dim
self._chain = None
self._lnprob = None
self._lnlikelihood = None
if betas is None:
self._betas = self.exponential_beta_ladder(ntemps)
else:
self._betas = betas
self.nswap = np.zeros(ntemps, dtype=np.float)
self.nswap_accepted = np.zeros(ntemps, dtype=np.float)
self.pool = pool
if threads > 1 and pool is None:
self.pool = multi.Pool(threads)
self.samplers = [em.EnsembleSampler(nwalkers, dim,
PTPost(logl, logp, b),
pool=self.pool)
for b in self.betas]
示例9: _initialise_sampler
# 需要導入模塊: import emcee [as 別名]
# 或者: from emcee import EnsembleSampler [as 別名]
def _initialise_sampler(self):
self._sampler = self.emcee.EnsembleSampler(**self.sampler_init_kwargs)
self._init_chain_file()
示例10: __init__
# 需要導入模塊: import emcee [as 別名]
# 或者: from emcee import EnsembleSampler [as 別名]
def __init__(self, model, nwalkers,
checkpoint_interval=None, checkpoint_signal=None,
logpost_function=None, nprocesses=1, use_mpi=False):
self.model = model
# create a wrapper for calling the model
if logpost_function is None:
logpost_function = 'logposterior'
model_call = models.CallModel(model, logpost_function)
# Set up the pool
if nprocesses > 1:
# these are used to help paralleize over multiple cores / MPI
models._global_instance = model_call
model_call = models._call_global_model
pool = choose_pool(mpi=use_mpi, processes=nprocesses)
if pool is not None:
pool.count = nprocesses
# set up emcee
self.nwalkers = nwalkers
ndim = len(model.variable_params)
self._sampler = emcee.EnsembleSampler(nwalkers, ndim, model_call,
pool=pool)
# emcee uses it's own internal random number generator; we'll set it
# to have the same state as the numpy generator
rstate = numpy.random.get_state()
self._sampler.random_state = rstate
self._checkpoint_interval = checkpoint_interval
self._checkpoint_signal = checkpoint_signal