當前位置: 首頁>>代碼示例>>Python>>正文


Python editdistance.eval方法代碼示例

本文整理匯總了Python中editdistance.eval方法的典型用法代碼示例。如果您正苦於以下問題:Python editdistance.eval方法的具體用法?Python editdistance.eval怎麽用?Python editdistance.eval使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在editdistance的用法示例。


在下文中一共展示了editdistance.eval方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __is_wrong_permission

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def __is_wrong_permission(self, permission):
        """
        Return True if the permission contains a typo
        """
        if permission not in YaraRule.PERMISSION_SET:
            if permission in YaraRule.WRONG_PERMISSION_DICT.keys():
                return True
            if permission in YaraRule.CACHE_NNSTD_PERMISSION_DICT:
                return False
            for standard_perm in YaraRule.PERMISSION_SET:
                distance = editdistance.eval(permission, standard_perm)
                if distance > 0 and distance <= 3:
                    YaraRule.WRONG_PERMISSION_DICT[permission] = standard_perm
                    return True
                else:
                    YaraRule.CACHE_NNSTD_PERMISSION_DICT.add(permission)
        return False 
開發者ID:jimmy-sonny,項目名稱:YaYaGen,代碼行數:19,代碼來源:rule.py

示例2: add_iter

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def add_iter(self, output, out_length, label_length, labels):
        start = 0
        start_o = 0
        self.total_samples += label_length.size()[0]
        raw_prdts = output.topk(1)[1]
        prdt_texts, prdt_prob = self.de.decode(output, out_length)
        for i in range(0, len(prdt_texts)):
            if not self.case_sensitive:
                prdt_texts[i] = prdt_texts[i].lower()
                labels[i] = labels[i].lower()
            all_words = []
            for w in labels[i].split('|') + prdt_texts[i].split('|'):
                if w not in all_words:
                    all_words.append(w)
            l_words = [all_words.index(_) for _ in labels[i].split('|')]
            p_words = [all_words.index(_) for _ in prdt_texts[i].split('|')]
            self.distance_C += ed.eval(labels[i], prdt_texts[i])
            self.distance_W += ed.eval(l_words, p_words)
            self.total_C += len(labels[i])
            self.total_W += len(l_words)
            self.correct = self.correct + 1 if labels[i] == prdt_texts[i] else self.correct 
開發者ID:Wang-Tianwei,項目名稱:Decoupled-attention-network,代碼行數:23,代碼來源:utils.py

示例3: _query

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def _query(self, node, txt, tolerance):
		# handle empty root node
		if node is None:
			return []

		# distance between query and current node
		d = ed.eval(node[0], txt)

		# add current node to result if within tolerance
		res = []
		if d <= tolerance:
			res.append(node[0])

		# iterate over children
		for (edge, child) in node[1].items():
			if d - tolerance <= edge and edge <= d + tolerance:
				res += self._query(child, txt, tolerance)

		return res 
開發者ID:githubharald,項目名稱:CTCDecoder,代碼行數:21,代碼來源:BKTree.py

示例4: transform

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def transform(self, X: dt.Frame):
        import editdistance
        output = []
        X = X.to_pandas()
        text1_arr = X.iloc[:, 0].values
        text2_arr = X.iloc[:, 1].values
        for ind, text1 in enumerate(text1_arr):
            try:
                text1 = str(text1).lower().split()
                text2 = text2_arr[ind]
                text2 = str(text2).lower().split()
                edit_distance = editdistance.eval(text1, text2)
                output.append(edit_distance)
            except:
                output.append(-1)
        return np.array(output) 
開發者ID:h2oai,項目名稱:driverlessai-recipes,代碼行數:18,代碼來源:text_similarity_transformers.py

示例5: edit_distance_batch

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def edit_distance_batch(hyp, tar, tar_len, eos_idx):
  cer = 0.
  bs = hyp.shape[0]

  for i in range(bs):
    # filter hyp for eos
    hyp_len = np.argmax(hyp[i] == eos_idx, axis=0)
    if hyp_len.size == 0:
      hyp_len = hyp[i].size

    # filter tar for eos
    eos_pos = np.argmax(tar[i] == eos_idx, axis=0)
    if eos_pos.size > 0:
      tar_len[i] = eos_pos

    cer += editdistance.eval(hyp[i, :hyp_len], tar[i, :tar_len[i]]) / float(tar_len[i])
  return np.float32(cer / bs) 
開發者ID:sommerschield,項目名稱:ancient-text-restoration,代碼行數:19,代碼來源:vocab.py

示例6: enhance

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def enhance(self, xs):
        """Forward only in the frontend stage.

        :param ndarray xs: input acoustic feature (T, C, F)
        :return: enhaned feature
        :rtype: torch.Tensor
        """
        if self.frontend is None:
            raise RuntimeError("Frontend does't exist")
        prev = self.training
        self.eval()
        ilens = np.fromiter((xx.shape[0] for xx in xs), dtype=np.int64)

        # subsample frame
        xs = [xx[:: self.subsample[0], :] for xx in xs]
        xs = [to_device(self, to_torch_tensor(xx).float()) for xx in xs]
        xs_pad = pad_list(xs, 0.0)
        enhanced, hlensm, mask = self.frontend(xs_pad, ilens)
        if prev:
            self.train()
        return enhanced.cpu().numpy(), mask.cpu().numpy(), ilens 
開發者ID:espnet,項目名稱:espnet,代碼行數:23,代碼來源:e2e_asr.py

示例7: encode

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def encode(self, x):
        """Encode acoustic features.

        :param ndarray x: input acoustic feature (T, D)
        :return: encoder outputs
        :rtype: torch.Tensor
        """
        self.eval()
        ilens = [x.shape[0]]

        # subsample frame
        x = x[:: self.subsample[0], :]
        p = next(self.parameters())
        h = torch.as_tensor(x, device=p.device, dtype=p.dtype)
        # make a utt list (1) to use the same interface for encoder
        hs = h.contiguous().unsqueeze(0)

        # 1. encoder
        hs, _, _ = self.enc(hs, ilens)
        return hs.squeeze(0) 
開發者ID:espnet,項目名稱:espnet,代碼行數:22,代碼來源:e2e_st.py

示例8: calculate_cer

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def calculate_cer(self, seqs_hat, seqs_true):
        """Calculate sentence-level CER score.

        :param list seqs_hat: prediction
        :param list seqs_true: reference
        :return: average sentence-level CER score
        :rtype float
        """
        char_eds, char_ref_lens = [], []
        for i, seq_hat_text in enumerate(seqs_hat):
            seq_true_text = seqs_true[i]
            hyp_chars = seq_hat_text.replace(" ", "")
            ref_chars = seq_true_text.replace(" ", "")
            char_eds.append(editdistance.eval(hyp_chars, ref_chars))
            char_ref_lens.append(len(ref_chars))
        return float(sum(char_eds)) / sum(char_ref_lens) 
開發者ID:espnet,項目名稱:espnet,代碼行數:18,代碼來源:e2e_asr_common.py

示例9: calculate_wer

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def calculate_wer(self, seqs_hat, seqs_true):
        """Calculate sentence-level WER score.

        :param list seqs_hat: prediction
        :param list seqs_true: reference
        :return: average sentence-level WER score
        :rtype float
        """
        word_eds, word_ref_lens = [], []
        for i, seq_hat_text in enumerate(seqs_hat):
            seq_true_text = seqs_true[i]
            hyp_words = seq_hat_text.split()
            ref_words = seq_true_text.split()
            word_eds.append(editdistance.eval(hyp_words, ref_words))
            word_ref_lens.append(len(ref_words))
        return float(sum(word_eds)) / sum(word_ref_lens) 
開發者ID:espnet,項目名稱:espnet,代碼行數:18,代碼來源:e2e_asr_common.py

示例10: show_edit_distance

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def show_edit_distance(self, num):
        num_left = num
        mean_norm_ed = 0.0
        mean_ed = 0.0
        while num_left > 0:
            word_batch = next(self.text_img_gen)[0]
            num_proc = min(word_batch['the_input'].shape[0], num_left)
            decoded_res = decode_batch(self.test_func, word_batch['the_input'][0:num_proc])
            for j in range(num_proc):
                edit_dist = editdistance.eval(decoded_res[j], word_batch['source_str'][j])
                mean_ed += float(edit_dist)
                mean_norm_ed += float(edit_dist) / len(word_batch['source_str'][j])
            num_left -= num_proc
        mean_norm_ed = mean_norm_ed / num
        mean_ed = mean_ed / num
        print('\nOut of %d samples:  Mean edit distance: %.3f Mean normalized edit distance: %0.3f'
              % (num, mean_ed, mean_norm_ed)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:19,代碼來源:image_ocr.py

示例11: get_frames

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def get_frames(self, lemma):
        """
        Given a lemma, find the most likely frames for the lemma.
        If no lemma is found or it should be a senseless node, return a single element list [lemma].
        """
        if lemma in self.frequent_senseless_nodes or lemma not in self.lemma_frame_map:
            return [lemma]
        else:
            frames = list(self.lemma_frame_map[lemma])
            frames.sort(
                key=lambda frame: (
                    editdistance.eval(re.sub(r'-\d\d$', '', frame), lemma),
                    -int(frame[-2:]) if re.search(r'-\d\d$', frame) else 0
                ),
                reverse=True
            )
            return frames 
開發者ID:jcyk,項目名稱:gtos,代碼行數:19,代碼來源:node_utils.py

示例12: show_edit_distance

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def show_edit_distance(self, num):
        num_left = num
        mean_norm_ed = 0.0
        mean_ed = 0.0
        while num_left > 0:
            word_batch = next(self.text_img_gen)[0]
            num_proc = min(word_batch['the_input'].shape[0], num_left)
            decoded_res = decode_batch(self.test_func, word_batch['the_input'][0:num_proc])
            for j in range(0, num_proc):
                edit_dist = editdistance.eval(decoded_res[j], word_batch['source_str'][j])
                mean_ed += float(edit_dist)
                mean_norm_ed += float(edit_dist) / len(word_batch['source_str'][j])
            num_left -= num_proc
        mean_norm_ed = mean_norm_ed / num
        mean_ed = mean_ed / num
        print('\nOut of %d samples:  Mean edit distance: %.3f Mean normalized edit distance: %0.3f'
              % (num, mean_ed, mean_norm_ed)) 
開發者ID:xjtushilei,項目名稱:pCVR,代碼行數:19,代碼來源:image_ocr.py

示例13: editDistance

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def editDistance(s1, s2):
    # check if editdistance module loaded
    if EDIT_DISTANCE_MODULE_EXISTS:
        return editdistance.eval(s1, s2)
    elif EDIT_DISTANCE_CTYPES_LOADED:
        return ed_ctypes.edit_distance(s1, len(s1), s2, len(s2))

    m=len(s1)+1
    n=len(s2)+1

    tbl = [([0] * n) for i in xrange(m)]
    for i in xrange(m):tbl[i][0]=i
    for j in xrange(n):tbl[0][j]=j
    for i in xrange(1, m):
        for j in xrange(1, n):
            cost = 0 if s1[i-1] == s2[j-1] else 1
            tbl[i][j] = min(tbl[i][j-1]+1, tbl[i-1][j]+1, tbl[i-1][j-1]+cost)

    return tbl[i][j] 
開發者ID:OpenGene,項目名稱:AfterQC,代碼行數:21,代碼來源:util.py

示例14: inference_metrics

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def inference_metrics(model, src, tgt, config):
    """ decode and evaluate bleu """
    inputs, preds, top_k_preds, ground_truths, auxs, raw_srcs = decode_dataset(
        model, src, tgt, config, k=config['eval']['precision_recall_k'])

    eval_classifier = models.TextClassifier.from_pickle(
        config['eval']['classifier_path'])

    metrics = get_metrics(
        raw_srcs, preds, ground_truths, 
        top_k_preds=top_k_preds, classifier=eval_classifier)

    inputs = [' '.join(seq) for seq in inputs]
    preds = [' '.join(seq) for seq in preds]
    ground_truths = [' '.join(seq) for seq in ground_truths]
    auxs = [' '.join(seq) for seq in auxs]

    return metrics, inputs, preds, ground_truths, auxs 
開發者ID:rpryzant,項目名稱:neutralizing-bias,代碼行數:20,代碼來源:evaluation.py

示例15: edit_distance

# 需要導入模塊: import editdistance [as 別名]
# 或者: from editdistance import eval [as 別名]
def edit_distance(x, y):
    """Levenshtein Distance

    The "feature" dimension is along the columns and the "time" dimension
    along the lines of arrays x and y
    """
    # convert arrays to tuple, to evaluate w/ editdistance
    def totuple(a):
        try:
            return tuple(totuple(i) for i in a)
        except TypeError:
            return a

    if x.shape[0] > 0 and y.shape[0] > 0:
        # x and y are not empty
        d = editdistance.eval(totuple(x), totuple(y))
    elif x.shape[0] == y.shape[0]:
        # both x and y are empty
        d = 0
    else:
        # x or y is empty
        d = np.inf
    return d 
開發者ID:bootphon,項目名稱:ABXpy,代碼行數:25,代碼來源:distance.py


注:本文中的editdistance.eval方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。