當前位置: 首頁>>代碼示例>>Python>>正文


Python easydict.EasyDict方法代碼示例

本文整理匯總了Python中easydict.EasyDict方法的典型用法代碼示例。如果您正苦於以下問題:Python easydict.EasyDict方法的具體用法?Python easydict.EasyDict怎麽用?Python easydict.EasyDict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在easydict的用法示例。


在下文中一共展示了easydict.EasyDict方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_config_from_json

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def get_config_from_json(json_file):
    """
    Get the config from a json file
    :param json_file: the path of the config file
    :return: config(namespace), config(dictionary)
    """

    # parse the configurations from the config json file provided
    with open(json_file, 'r') as config_file:
        try:
            config_dict = json.load(config_file)
            # EasyDict allows to access dict values as attributes (works recursively).
            config = EasyDict(config_dict)
            return config, config_dict
        except ValueError:
            print("INVALID JSON file format.. Please provide a good json file")
            exit(-1) 
開發者ID:moemen95,項目名稱:Pytorch-Project-Template,代碼行數:19,代碼來源:config.py

示例2: get_config

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def get_config(config_file, exp_dir=None):
  """ Construct and snapshot hyper parameters """
  config = edict(yaml.load(open(config_file, 'r')))

  # create hyper parameters
  config.run_id = str(os.getpid())
  config.exp_name = '_'.join([
      config.model.name, config.dataset.name,
      time.strftime('%Y-%b-%d-%H-%M-%S'), config.run_id
  ])

  if exp_dir is not None:
    config.exp_dir = exp_dir

  config.save_dir = os.path.join(config.exp_dir, config.exp_name)

  # snapshot hyperparameters
  mkdir(config.exp_dir)
  mkdir(config.save_dir)

  save_name = os.path.join(config.save_dir, 'config.yaml')
  yaml.dump(edict2dict(config), open(save_name, 'w'), default_flow_style=False)

  return config 
開發者ID:lrjconan,項目名稱:LanczosNetwork,代碼行數:26,代碼來源:arg_helper.py

示例3: get_dataset_celeb

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def get_dataset_celeb(input_dir):
  clean_list_file = input_dir+"_clean_list.txt"
  ret = []
  dir2label = {}
  for line in open(clean_list_file, 'r'):
    line = line.strip()
    if not line.startswith('./m.'):
      continue
    line = line[2:]
    vec = line.split('/')
    assert len(vec)==2
    if vec[0] in dir2label:
      label = dir2label[vec[0]]
    else:
      label = len(dir2label)
      dir2label[vec[0]] = label

    fimage = edict()
    fimage.id = line
    fimage.classname = str(label)
    fimage.image_path = os.path.join(input_dir, fimage.id)
    ret.append(fimage)
  return ret 
開發者ID:deepinsight,項目名稱:insightface,代碼行數:25,代碼來源:face_image.py

示例4: get_dataset_facescrub

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def get_dataset_facescrub(input_dir):
  ret = []
  label = 0
  person_names = []
  for person_name in os.listdir(input_dir):
    person_names.append(person_name)
  person_names = sorted(person_names)
  for person_name in person_names:
    subdir = os.path.join(input_dir, person_name)
    if not os.path.isdir(subdir):
      continue
    for _img in os.listdir(subdir):
      fimage = edict()
      fimage.id = os.path.join(person_name, _img)
      fimage.classname = str(label)
      fimage.image_path = os.path.join(subdir, _img)
      fimage.landmark = None
      fimage.bbox = None
      ret.append(fimage)
    label += 1
  return ret 
開發者ID:deepinsight,項目名稱:insightface,代碼行數:23,代碼來源:face_image.py

示例5: update_config

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def update_config(config_file):
    exp_config = None
    with open(config_file) as f:
        exp_config = edict(yaml.load(f))
        for k, v in exp_config.items():
            if k in config:
                if isinstance(v, dict):
                    if k == 'TRAIN':
                        if 'BBOX_WEIGHTS' in v:
                            v['BBOX_WEIGHTS'] = np.array(v['BBOX_WEIGHTS'])
                    elif k == 'network':
                        if 'PIXEL_MEANS' in v:
                            v['PIXEL_MEANS'] = np.array(v['PIXEL_MEANS'])
                    for vk, vv in v.items():
                        config[k][vk] = vv
                else:
                    if k == 'SCALES':
                        config[k][0] = (tuple(v))
                    else:
                        config[k] = v
            else:
                raise ValueError("key must exist in config.py") 
開發者ID:tonysy,項目名稱:Deep-Feature-Flow-Segmentation,代碼行數:24,代碼來源:dff_config.py

示例6: get_config_from_json

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def get_config_from_json(json_file):
    """
    Get the config from a json file
    Input:
        - json_file: json configuration file
    Return:
        - config: namespace
        - config_dict: dictionary
    """
    # parse the configurations from the config json file provided
    with open(json_file, 'r') as config_file:
        config_dict = json.load(config_file)

    # convert the dictionary to a namespace using bunch lib
    config = EasyDict(config_dict)

    return config, config_dict 
開發者ID:Jiaolong,項目名稱:self-supervised-da,代碼行數:19,代碼來源:config.py

示例7: get_config_from_yaml

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def get_config_from_yaml(yaml_file):
    """
    Get the config from yaml file
    Input:
        - yaml_file: yaml configuration file
    Return:
        - config: namespace
        - config_dict: dictionary
    """

    with open(yaml_file) as fp:
        config_dict = yaml.load(fp)

    # convert the dictionary to a namespace using bunch lib
    config = EasyDict(config_dict)
    return config, config_dict 
開發者ID:Jiaolong,項目名稱:self-supervised-da,代碼行數:18,代碼來源:config.py

示例8: _merge_a_into_b

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def _merge_a_into_b(a, b):
  """Merge config dictionary a into config dictionary b, clobbering the
  options in b whenever they are also specified in a.
  """
  if type(a) is not edict:
    return

  for k, v in a.items():
    # a must specify keys that are in b
    if k not in b:
      raise KeyError('{} is not a valid config key'.format(k))

    # the types must match, too
    old_type = type(b[k])
    if old_type is not type(v):
      if isinstance(b[k], np.ndarray):
        v = np.array(v, dtype=b[k].dtype)
      else:
        raise ValueError(('Type mismatch ({} vs. {}) '
                          'for config key: {}').format(type(b[k]),
                                                       type(v), k))

    # recursively merge dicts
    if type(v) is edict:
      try:
        _merge_a_into_b(a[k], b[k])
      except:
        print(('Error under config key: {}'.format(k)))
        raise
    else:
      b[k] = v 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:33,代碼來源:config.py

示例9: cfg_from_file

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def cfg_from_file(filename):
  """Load a config file and merge it into the default options."""
  import yaml
  with open(filename, 'r') as f:
    yaml_cfg = edict(yaml.load(f))

  _merge_a_into_b(yaml_cfg, __C) 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:9,代碼來源:config.py

示例10: process_config

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def process_config(json_file):
    """
    Get the json file
    Processing it with EasyDict to be accessible as attributes
    then editing the path of the experiments folder
    creating some important directories in the experiment folder
    Then setup the logging in the whole program
    Then return the config
    :param json_file: the path of the config file
    :return: config object(namespace)
    """
    config, _ = get_config_from_json(json_file)
    print(" THE Configuration of your experiment ..")
    pprint(config)

    # making sure that you have provided the exp_name.
    try:
        print(" *************************************** ")
        print("The experiment name is {}".format(config.exp_name))
        print(" *************************************** ")
    except AttributeError:
        print("ERROR!!..Please provide the exp_name in json file..")
        exit(-1)

    # create some important directories to be used for that experiment.
    config.summary_dir = os.path.join("experiments", config.exp_name, "summaries/")
    config.checkpoint_dir = os.path.join("experiments", config.exp_name, "checkpoints/")
    config.out_dir = os.path.join("experiments", config.exp_name, "out/")
    config.log_dir = os.path.join("experiments", config.exp_name, "logs/")
    create_dirs([config.summary_dir, config.checkpoint_dir, config.out_dir, config.log_dir])

    # setup logging in the project
    setup_logging(config.log_dir)

    logging.getLogger().info("Hi, This is root.")
    logging.getLogger().info("After the configurations are successfully processed and dirs are created.")
    logging.getLogger().info("The pipeline of the project will begin now.")

    return config 
開發者ID:moemen95,項目名稱:Pytorch-Project-Template,代碼行數:41,代碼來源:config.py

示例11: main

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def main():
    config = json.load(open('../../configs/dcgan_exp_0.json'))
    config = edict(config)
    inp  = torch.autograd.Variable(torch.randn(config.batch_size, config.g_input_size, 1, 1))
    print (inp.shape)
    netD = Generator(config)
    out = netD(inp)
    print (out.shape) 
開發者ID:moemen95,項目名稱:Pytorch-Project-Template,代碼行數:10,代碼來源:dcgan_generator.py

示例12: main

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def main():
    config = json.load(open('../../configs/dcgan_exp_0.json'))
    config = edict(config)
    inp  = torch.autograd.Variable(torch.randn(config.batch_size, config.input_channels, config.image_size, config.image_size))
    print (inp.shape)
    netD = Discriminator(config)
    out = netD(inp)
    print (out) 
開發者ID:moemen95,項目名稱:Pytorch-Project-Template,代碼行數:10,代碼來源:dcgan_discriminator.py

示例13: pad_collate

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def pad_collate(data):
    """Creates mini-batch tensors from the list of tuples (src_seq, trg_seq).
    """
    # separate source and target sequences
    batch = edict()
    batch["qas"], batch["qas_mask"] = pad_sequences_2d([d["qas"] for d in data], dtype=torch.long)
    batch["qas_bert"], _ = pad_sequences_2d([d["qas_bert"] for d in data], dtype=torch.float)
    batch["sub"], batch["sub_mask"] = pad_sequences_2d([d["sub"] for d in data], dtype=torch.long)
    batch["sub_bert"], _ = pad_sequences_2d([d["sub_bert"] for d in data], dtype=torch.float)
    batch["vid_name"] = [d["vid_name"] for d in data]
    batch["qid"] = [d["qid"] for d in data]
    batch["target"] = torch.tensor([d["target"] for d in data], dtype=torch.long)
    batch["vcpt"], batch["vcpt_mask"] = pad_sequences_2d([d["vcpt"] for d in data], dtype=torch.long)
    batch["vid"], batch["vid_mask"] = pad_sequences_2d([d["vfeat"] for d in data], dtype=torch.float)
    # no need to pad these two, since we will break down to instances anyway
    batch["att_labels"] = [d["att_labels"] for d in data]  # a list, each will be (num_img, num_words)
    batch["anno_st_idx"] = [d["anno_st_idx"] for d in data]  # list(int)
    if data[0]["ts_label"] is None:
        batch["ts_label"] = None
    elif isinstance(data[0]["ts_label"], list):  # (st_ed, ce)
        batch["ts_label"] = dict(
            st=torch.LongTensor([d["ts_label"][0] for d in data]),
            ed=torch.LongTensor([d["ts_label"][1] for d in data]),
        )
        batch["ts_label_mask"] = make_mask_from_length([len(d["image_indices"]) for d in data])
    elif isinstance(data[0]["ts_label"], torch.Tensor):  # (st_ed, bce) or frm
        batch["ts_label"], batch["ts_label_mask"] = pad_sequences_1d([d["ts_label"] for d in data], dtype=torch.float)
    else:
        raise NotImplementedError

    batch["ts"] = [d["ts"] for d in data]
    batch["image_indices"] = [d["image_indices"] for d in data]
    batch["q_l"] = [d["q_l"] for d in data]

    batch["boxes"] = [d["boxes"] for d in data]
    batch["object_labels"] = [d["object_labels"] for d in data]
    return batch 
開發者ID:jayleicn,項目名稱:TVQAplus,代碼行數:39,代碼來源:tvqa_dataset.py

示例14: edict2dict

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def edict2dict(edict_obj):
  dict_obj = {}

  for key, vals in edict_obj.items():
    if isinstance(vals, edict):
      dict_obj[key] = edict2dict(vals)
    else:
      dict_obj[key] = vals

  return dict_obj 
開發者ID:lrjconan,項目名稱:LanczosNetwork,代碼行數:12,代碼來源:arg_helper.py

示例15: __init__

# 需要導入模塊: import easydict [as 別名]
# 或者: from easydict import EasyDict [as 別名]
def __init__(self, args):
    self.args = args
    model = edict()

    self.threshold = args.threshold
    self.det_minsize = 50
    self.det_threshold = [0.4,0.6,0.6]
    self.det_factor = 0.9
    _vec = args.image_size.split(',')
    assert len(_vec)==2
    image_size = (int(_vec[0]), int(_vec[1]))
    self.image_size = image_size
    _vec = args.model.split(',')
    assert len(_vec)==2
    prefix = _vec[0]
    epoch = int(_vec[1])
    print('loading',prefix, epoch)
    ctx = mx.gpu(args.gpu)
    sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
    all_layers = sym.get_internals()
    sym = all_layers['fc1_output']
    model = mx.mod.Module(symbol=sym, context=ctx, label_names = None)
    #model.bind(data_shapes=[('data', (args.batch_size, 3, image_size[0], image_size[1]))], label_shapes=[('softmax_label', (args.batch_size,))])
    model.bind(data_shapes=[('data', (1, 3, image_size[0], image_size[1]))])
    model.set_params(arg_params, aux_params)
    self.model = model
    mtcnn_path = os.path.join(os.path.dirname(__file__), 'mtcnn-model')
    detector = MtcnnDetector(model_folder=mtcnn_path, ctx=ctx, num_worker=1, accurate_landmark = True, threshold=[0.0,0.0,0.2])
    self.detector = detector 
開發者ID:deepinsight,項目名稱:insightface,代碼行數:31,代碼來源:face_embedding.py


注:本文中的easydict.EasyDict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。