本文整理匯總了Python中dynet.lookup方法的典型用法代碼示例。如果您正苦於以下問題:Python dynet.lookup方法的具體用法?Python dynet.lookup怎麽用?Python dynet.lookup使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類dynet
的用法示例。
在下文中一共展示了dynet.lookup方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: word_rep
# 需要導入模塊: import dynet [as 別名]
# 或者: from dynet import lookup [as 別名]
def word_rep(self, word):
'''
:param word: index of word in lookup table
'''
if options.bigram:
word = word[1]
pass
if self.use_char_rnn:
# Note: use original casing ("word") for characters
char_ids = self.word_to_char_ids[word]
char_embs = [self.char_lookup[cid] for cid in char_ids]
char_exprs = self.char_bi_lstm.transduce(char_embs)
if self.use_we:
wemb = dy.lookup(self.words_lookup, word, update=self.we_update)
return dy.concatenate([wemb, char_exprs[-1]])
else:
return char_exprs[-1]
else:
wemb = dy.lookup(self.words_lookup, word, update=self.we_update)
return wemb
示例2: __init__
# 需要導入模塊: import dynet [as 別名]
# 或者: from dynet import lookup [as 別名]
def __init__(self, words, vectors=None, is_unique=False, update=True):
# This option is to preserve order in case order is needed
if not is_unique:
words = list(set(words))
# Update pre-trained vectors
self.update = update
# Pre-trained vectors
self.vectors = vectors
# Word to index dictionary (encode)
self.w2i = {w: i for i, w in enumerate(words)}
# Index to word dictionary (decode)
self.i2w = {i: w for w, i in self.w2i.items()}
# Unknown vectors
self.UNK = None
self.UNKNumber = None
# Model lookup table
self.lookup_table = None
示例3: word_repr
# 需要導入模塊: import dynet [as 別名]
# 或者: from dynet import lookup [as 別名]
def word_repr(self, char_seq, cembs):
# obtain the word representation when given its character sequence
wlen = len(char_seq)
if 'rgW%d'%wlen not in self.param_exprs:
self.param_exprs['rgW%d'%wlen] = dy.parameter(self.params['reset_gate_W'][wlen-1])
self.param_exprs['rgb%d'%wlen] = dy.parameter(self.params['reset_gate_b'][wlen-1])
self.param_exprs['cW%d'%wlen] = dy.parameter(self.params['com_W'][wlen-1])
self.param_exprs['cb%d'%wlen] = dy.parameter(self.params['com_b'][wlen-1])
chars = dy.concatenate(cembs)
reset_gate = dy.logistic(self.param_exprs['rgW%d'%wlen] * chars + self.param_exprs['rgb%d'%wlen])
word = dy.tanh(self.param_exprs['cW%d'%wlen] * dy.cmult(reset_gate,chars) + self.param_exprs['cb%d'%wlen])
if self.known_words is not None and tuple(char_seq) in self.known_words:
return (word + dy.lookup(self.params['word_embed'],self.known_words[tuple(char_seq)]))/2.
return word
示例4: word_rep
# 需要導入模塊: import dynet [as 別名]
# 或者: from dynet import lookup [as 別名]
def word_rep(self, word, char_ids):
'''
:param word: index of word in lookup table
'''
wemb = dy.lookup(self.words_lookup, word, update=self.we_update)
if char_ids is None:
return wemb
# add character representation
char_embs = [self.char_lookup[cid] for cid in char_ids]
char_exprs = self.char_bi_lstm.transduce(char_embs)
#char_exprs[-1] contains the final forward hidden state,
#but the initial backward hidden state
forward = char_exprs[-1][:self.char_hidden_dim // 2]
backward = char_exprs[0][self.char_hidden_dim // 2:]
return dy.concatenate([wemb, forward, backward])
示例5: build_tagging_graph
# 需要導入模塊: import dynet [as 別名]
# 或者: from dynet import lookup [as 別名]
def build_tagging_graph(self, sentence):
dy.renew_cg()
embeddings = [self.word_rep(w) for w in sentence]
lstm_out = self.bi_lstm.transduce(embeddings)
H = dy.parameter(self.lstm_to_tags_params)
Hb = dy.parameter(self.lstm_to_tags_bias)
O = dy.parameter(self.mlp_out)
Ob = dy.parameter(self.mlp_out_bias)
scores = []
if options.bigram:
for rep, word in zip(lstm_out, sentence):
bi1 = dy.lookup(self.bigram_lookup, word[0], update=self.we_update)
bi2 = dy.lookup(self.bigram_lookup, word[1], update=self.we_update)
if self.dropout is not None:
bi1 = dy.dropout(bi1, self.dropout)
bi2 = dy.dropout(bi2, self.dropout)
score_t = O * dy.tanh(H * dy.concatenate(
[bi1,
rep,
bi2]) + Hb) + Ob
scores.append(score_t)
else:
for rep in lstm_out:
score_t = O * dy.tanh(H * rep + Hb) + Ob
scores.append(score_t)
return scores
示例6: lookup
# 需要導入模塊: import dynet [as 別名]
# 或者: from dynet import lookup [as 別名]
def lookup(self, word):
if word in self.w2i:
return dy.lookup(self.lookup_table, self.w2i[word], update=self.update)
try:
float(word)
return self.UNKNumber
except ValueError:
return self.UNK
示例7: __call__
# 需要導入模塊: import dynet [as 別名]
# 或者: from dynet import lookup [as 別名]
def __call__(self, query, options, gold, lengths, query_no):
if len(options) == 1:
return None, 0
final = []
if args.word_vectors:
qvecs = [dy.lookup(self.pEmbedding, w) for w in query]
qvec_max = dy.emax(qvecs)
qvec_mean = dy.average(qvecs)
for otext, features in options:
inputs = dy.inputTensor(features)
if args.word_vectors:
ovecs = [dy.lookup(self.pEmbedding, w) for w in otext]
ovec_max = dy.emax(ovecs)
ovec_mean = dy.average(ovecs)
inputs = dy.concatenate([inputs, qvec_max, qvec_mean, ovec_max, ovec_mean])
if args.drop > 0:
inputs = dy.dropout(inputs, args.drop)
h = inputs
for pH, pB in zip(self.hidden, self.bias):
h = dy.affine_transform([pB, pH, h])
if args.nonlin == "linear":
pass
elif args.nonlin == "tanh":
h = dy.tanh(h)
elif args.nonlin == "cube":
h = dy.cube(h)
elif args.nonlin == "logistic":
h = dy.logistic(h)
elif args.nonlin == "relu":
h = dy.rectify(h)
elif args.nonlin == "elu":
h = dy.elu(h)
elif args.nonlin == "selu":
h = dy.selu(h)
elif args.nonlin == "softsign":
h = dy.softsign(h)
elif args.nonlin == "swish":
h = dy.cmult(h, dy.logistic(h))
final.append(dy.sum_dim(h, [0]))
final = dy.concatenate(final)
nll = -dy.log_softmax(final)
dense_gold = []
for i in range(len(options)):
dense_gold.append(1.0 / len(gold) if i in gold else 0.0)
answer = dy.inputTensor(dense_gold)
loss = dy.transpose(answer) * nll
predicted_link = np.argmax(final.npvalue())
return loss, predicted_link
示例8: greedy_search
# 需要導入模塊: import dynet [as 別名]
# 或者: from dynet import lookup [as 別名]
def greedy_search(self, char_seq, truth = None, mu =0.):
init_state = self.params['lstm'].initial_state().add_input(self.param_exprs['<bos>'])
init_y = dy.tanh(self.param_exprs['pW'] * init_state.output() + self.param_exprs['pb'])
init_score = dy.scalarInput(0.)
init_sentence = Sentence(score=init_score.scalar_value(),score_expr=init_score,LSTMState =init_state, y= init_y , prevState = None, wlen=None, golden=True)
if truth is not None:
cembs = [ dy.dropout(dy.lookup(self.params['embed'],char),self.options['dropout_rate']) for char in char_seq ]
else:
cembs = [dy.lookup(self.params['embed'],char) for char in char_seq ]
start_agenda = init_sentence
agenda = [start_agenda]
for idx, _ in enumerate(char_seq,1): # from left to right, character by character
now = None
for wlen in xrange(1,min(idx,self.options['max_word_len'])+1): # generate word candidate vectors
# join segmentation sent + word
word = self.word_repr(char_seq[idx-wlen:idx], cembs[idx-wlen:idx])
sent = agenda[idx-wlen]
if truth is not None:
word = dy.dropout(word,self.options['dropout_rate'])
word_score = dy.dot_product(word,self.param_exprs['U'])
if truth is not None:
golden = sent.golden and truth[idx-1]==wlen
margin = dy.scalarInput(mu*wlen if truth[idx-1]!=wlen else 0.)
score = margin + sent.score_expr + dy.dot_product(sent.y, word) + word_score
else:
golden = False
score = sent.score_expr + dy.dot_product(sent.y, word) + word_score
good = (now is None or now.score < score.scalar_value())
if golden or good:
new_state = sent.LSTMState.add_input(word)
new_y = dy.tanh(self.param_exprs['pW'] * new_state.output() + self.param_exprs['pb'])
new_sent = Sentence(score=score.scalar_value(),score_expr=score,LSTMState=new_state,y=new_y, prevState=sent, wlen=wlen, golden=golden)
if good:
now = new_sent
if golden:
golden_sent = new_sent
agenda.append(now)
if truth is not None and truth[idx-1]>0 and (not now.golden):
return (now.score_expr - golden_sent.score_expr)
if truth is not None:
return (now.score_expr - golden_sent.score_expr)
return agenda
示例9: evaluate_recurrent
# 需要導入模塊: import dynet [as 別名]
# 或者: from dynet import lookup [as 別名]
def evaluate_recurrent(self, word_inds, tag_inds, test=False):
fwd1 = self.fwd_lstm1.initial_state()
back1 = self.back_lstm1.initial_state()
fwd2 = self.fwd_lstm2.initial_state()
back2 = self.back_lstm2.initial_state()
sentence = []
for (w, t) in zip(word_inds, tag_inds):
wordvec = dynet.lookup(self.word_embed, w)
tagvec = dynet.lookup(self.tag_embed, t)
vec = dynet.concatenate([wordvec, tagvec])
sentence.append(vec)
fwd1_out = []
for vec in sentence:
fwd1 = fwd1.add_input(vec)
fwd_vec = fwd1.output()
fwd1_out.append(fwd_vec)
back1_out = []
for vec in reversed(sentence):
back1 = back1.add_input(vec)
back_vec = back1.output()
back1_out.append(back_vec)
lstm2_input = []
for (f, b) in zip(fwd1_out, reversed(back1_out)):
lstm2_input.append(dynet.concatenate([f, b]))
fwd2_out = []
for vec in lstm2_input:
if self.droprate > 0 and not test:
vec = dynet.dropout(vec, self.droprate)
fwd2 = fwd2.add_input(vec)
fwd_vec = fwd2.output()
fwd2_out.append(fwd_vec)
back2_out = []
for vec in reversed(lstm2_input):
if self.droprate > 0 and not test:
vec = dynet.dropout(vec, self.droprate)
back2 = back2.add_input(vec)
back_vec = back2.output()
back2_out.append(back_vec)
fwd_out = [dynet.concatenate([f1, f2]) for (f1, f2) in zip(fwd1_out, fwd2_out)]
back_out = [dynet.concatenate([b1, b2]) for (b1, b2) in zip(back1_out, back2_out)]
return fwd_out, back_out[::-1]