當前位置: 首頁>>代碼示例>>Python>>正文


Python dragnn_ops.write_annotations方法代碼示例

本文整理匯總了Python中dragnn.python.dragnn_ops.write_annotations方法的典型用法代碼示例。如果您正苦於以下問題:Python dragnn_ops.write_annotations方法的具體用法?Python dragnn_ops.write_annotations怎麽用?Python dragnn_ops.write_annotations使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dragnn.python.dragnn_ops的用法示例。


在下文中一共展示了dragnn_ops.write_annotations方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_inference

# 需要導入模塊: from dragnn.python import dragnn_ops [as 別名]
# 或者: from dragnn.python.dragnn_ops import write_annotations [as 別名]
def build_inference(self, handle, use_moving_average=False):
    """Builds an inference pipeline.

    This always uses the whole pipeline.

    Args:
      handle: Handle tensor for the ComputeSession.
      use_moving_average: Whether or not to read from the moving
        average variables instead of the true parameters. Note: it is not
        possible to make gradient updates when this is True.

    Returns:
      handle: Handle after annotation.
    """
    self.read_from_avg = use_moving_average
    network_states = {}

    for comp in self.components:
      network_states[comp.name] = component.NetworkState()
      handle = dragnn_ops.init_component_data(
          handle, beam_size=comp.inference_beam_size, component=comp.name)
      master_state = component.MasterState(handle,
                                           dragnn_ops.batch_size(
                                               handle, component=comp.name))
      with tf.control_dependencies([handle]):
        handle = comp.build_greedy_inference(master_state, network_states)
      handle = dragnn_ops.write_annotations(handle, component=comp.name)

    self.read_from_avg = False
    return handle 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:32,代碼來源:graph_builder.py

示例2: build_inference

# 需要導入模塊: from dragnn.python import dragnn_ops [as 別名]
# 或者: from dragnn.python.dragnn_ops import write_annotations [as 別名]
def build_inference(self,
                      handle,
                      use_moving_average=False,
                      build_runtime_graph=False):
    """Builds an inference pipeline.

    This always uses the whole pipeline.

    Args:
      handle: Handle tensor for the ComputeSession.
      use_moving_average: Whether or not to read from the moving
        average variables instead of the true parameters. Note: it is not
        possible to make gradient updates when this is True.
      build_runtime_graph: Whether to build a graph for use by the runtime.

    Returns:
      handle: Handle after annotation.
    """
    self.read_from_avg = use_moving_average
    self.build_runtime_graph = build_runtime_graph
    network_states = {}

    for comp in self.components:
      network_states[comp.name] = component.NetworkState()
      handle = dragnn_ops.init_component_data(
          handle, beam_size=comp.inference_beam_size, component=comp.name)
      if build_runtime_graph:
        batch_size = 1  # runtime uses singleton batches
      else:
        batch_size = dragnn_ops.batch_size(handle, component=comp.name)
      master_state = component.MasterState(handle, batch_size)
      with tf.control_dependencies([handle]):
        handle = comp.build_greedy_inference(master_state, network_states)
      handle = dragnn_ops.write_annotations(handle, component=comp.name)

    self.read_from_avg = False
    self.build_runtime_graph = False
    return handle 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:40,代碼來源:graph_builder.py


注:本文中的dragnn.python.dragnn_ops.write_annotations方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。