當前位置: 首頁>>代碼示例>>Python>>正文


Python dragnn_ops.emit_annotations方法代碼示例

本文整理匯總了Python中dragnn.python.dragnn_ops.emit_annotations方法的典型用法代碼示例。如果您正苦於以下問題:Python dragnn_ops.emit_annotations方法的具體用法?Python dragnn_ops.emit_annotations怎麽用?Python dragnn_ops.emit_annotations使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dragnn.python.dragnn_ops的用法示例。


在下文中一共展示了dragnn_ops.emit_annotations方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: add_annotation

# 需要導入模塊: from dragnn.python import dragnn_ops [as 別名]
# 或者: from dragnn.python.dragnn_ops import emit_annotations [as 別名]
def add_annotation(self, name_scope='annotation', enable_tracing=False):
    """Adds an annotation pipeline to the graph.

    This will create the following additional named targets by default, for use
    in C++ annotation code (as well as regular ComputeSession targets):
      annotation/ComputeSession/session_id (placeholder for giving unique id)
      annotation/EmitAnnotations (get annotated data)
      annotation/GetComponentTrace (get trace data)
      annotation/SetTracing (sets tracing based on annotation/tracing_on)

    Args:
      name_scope: Scope for the annotation pipeline.
      enable_tracing: Enabling this will result in two things:
          1. Tracing will be enabled during inference.
          2. A 'traces' node will be added to the outputs.

    Returns:
      A dictionary of input and output nodes.
    """
    with tf.name_scope(name_scope):
      handle, input_batch = self._get_session_with_reader(enable_tracing)
      handle = self.build_inference(handle, use_moving_average=True)

      annotations = dragnn_ops.emit_annotations(
          handle, component=self.spec.component[-1].name)
      outputs = {'annotations': annotations}

      if enable_tracing:
        outputs['traces'] = dragnn_ops.get_component_trace(
            handle, component=self.spec.component[-1].name)

      return self._outputs_with_release(handle, {'input_batch': input_batch},
                                        outputs) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:35,代碼來源:graph_builder.py

示例2: add_annotation

# 需要導入模塊: from dragnn.python import dragnn_ops [as 別名]
# 或者: from dragnn.python.dragnn_ops import emit_annotations [as 別名]
def add_annotation(self,
                     name_scope='annotation',
                     enable_tracing=False,
                     build_runtime_graph=False):
    """Adds an annotation pipeline to the graph.

    This will create the following additional named targets by default, for use
    in C++ annotation code (as well as regular ComputeSession targets):
      annotation/ComputeSession/session_id (placeholder for giving unique id)
      annotation/EmitAnnotations (get annotated data)
      annotation/GetComponentTrace (get trace data)
      annotation/SetTracing (sets tracing based on annotation/tracing_on)

    Args:
      name_scope: Scope for the annotation pipeline.
      enable_tracing: Enabling this will result in two things:
          1. Tracing will be enabled during inference.
          2. A 'traces' node will be added to the outputs.
      build_runtime_graph: Whether to build a graph for use by the runtime.

    Returns:
      A dictionary of input and output nodes.
    """
    with tf.name_scope(name_scope):
      handle, input_batch = self._get_session_with_reader(enable_tracing)
      handle = self.build_inference(
          handle,
          use_moving_average=True,
          build_runtime_graph=build_runtime_graph)

      annotations = dragnn_ops.emit_annotations(
          handle, component=self.spec.component[-1].name)
      outputs = {'annotations': annotations}

      if enable_tracing:
        outputs['traces'] = dragnn_ops.get_component_trace(
            handle, component=self.spec.component[-1].name)

      return self._outputs_with_release(handle, {'input_batch': input_batch},
                                        outputs) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:42,代碼來源:graph_builder.py


注:本文中的dragnn.python.dragnn_ops.emit_annotations方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。