當前位置: 首頁>>代碼示例>>Python>>正文


Python dragnn_ops.bulk_advance_from_prediction方法代碼示例

本文整理匯總了Python中dragnn.python.dragnn_ops.bulk_advance_from_prediction方法的典型用法代碼示例。如果您正苦於以下問題:Python dragnn_ops.bulk_advance_from_prediction方法的具體用法?Python dragnn_ops.bulk_advance_from_prediction怎麽用?Python dragnn_ops.bulk_advance_from_prediction使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dragnn.python.dragnn_ops的用法示例。


在下文中一共展示了dragnn_ops.bulk_advance_from_prediction方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_greedy_inference

# 需要導入模塊: from dragnn.python import dragnn_ops [as 別名]
# 或者: from dragnn.python.dragnn_ops import bulk_advance_from_prediction [as 別名]
def build_greedy_inference(self, state, network_states,
                             during_training=False):
    """Annotates a batch of documents using network scores.

    Args:
      state: MasterState from the 'AdvanceMaster' op that advances the
          underlying master to this component.
      network_states: dictionary of component NetworkState objects
      during_training: whether the graph is being constructed during training

    Returns:
      Handle to the state once inference is complete for this Component.

    Raises:
      RuntimeError: if fixed features are configured
    """
    logging.info('Building component: %s', self.spec.name)
    if self.spec.fixed_feature:
      raise RuntimeError(
          'Fixed features are not compatible with bulk annotation. '
          'Use the "bulk-features" component instead.')
    linked_embeddings = [
        fetch_linked_embedding(self, network_states, spec)
        for spec in self.spec.linked_feature
    ]

    if during_training:
      stride = state.current_batch_size * self.training_beam_size
    else:
      stride = state.current_batch_size * self.inference_beam_size

    with tf.variable_scope(self.name, reuse=True):
      network_tensors = self.network.create(
          [], linked_embeddings, None, None, during_training, stride)

    update_network_states(self, network_tensors, network_states, stride)

    logits = self.network.get_logits(network_tensors)
    return dragnn_ops.bulk_advance_from_prediction(
        state.handle, logits, component=self.name) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:42,代碼來源:bulk_component.py

示例2: build_greedy_inference

# 需要導入模塊: from dragnn.python import dragnn_ops [as 別名]
# 或者: from dragnn.python.dragnn_ops import bulk_advance_from_prediction [as 別名]
def build_greedy_inference(self, state, network_states,
                             during_training=False):
    """Annotates a batch of documents using network scores.

    Args:
      state: MasterState from the 'AdvanceMaster' op that advances the
          underlying master to this component.
      network_states: dictionary of component NetworkState objects
      during_training: whether the graph is being constructed during training

    Returns:
      Handle to the state once inference is complete for this Component.

    Raises:
      RuntimeError: if fixed features are configured
    """
    logging.info('Building component: %s', self.spec.name)
    if self.spec.fixed_feature:
      raise RuntimeError(
          'Fixed features are not compatible with bulk annotation. '
          'Use the "bulk-features" component instead.')
    linked_embeddings = [
        fetch_linked_embedding(self, network_states, spec)
        for spec in self.spec.linked_feature
    ]

    if during_training:
      stride = state.current_batch_size * self.training_beam_size
    else:
      stride = state.current_batch_size * self.inference_beam_size
    self.network.pre_create(stride)

    with tf.variable_scope(self.name, reuse=True):
      network_tensors = self.network.create([], linked_embeddings, None, None,
                                            during_training, stride)

    update_network_states(self, network_tensors, network_states, stride)

    logits = self.network.get_bulk_predictions(stride, network_tensors)
    if logits is None:
      # The network does not produce custom bulk predictions; default to logits.
      logits = self.network.get_logits(network_tensors)
      logits = tf.cond(self.locally_normalize,
                       lambda: tf.nn.log_softmax(logits), lambda: logits)
      if self._output_as_probabilities:
        logits = tf.nn.softmax(logits)
    handle = dragnn_ops.bulk_advance_from_prediction(
        state.handle, logits, component=self.name)

    self._add_runtime_hooks()
    return handle 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:53,代碼來源:bulk_component.py


注:本文中的dragnn.python.dragnn_ops.bulk_advance_from_prediction方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。