當前位置: 首頁>>代碼示例>>Python>>正文


Python dragnn_ops.bulk_advance_from_oracle方法代碼示例

本文整理匯總了Python中dragnn.python.dragnn_ops.bulk_advance_from_oracle方法的典型用法代碼示例。如果您正苦於以下問題:Python dragnn_ops.bulk_advance_from_oracle方法的具體用法?Python dragnn_ops.bulk_advance_from_oracle怎麽用?Python dragnn_ops.bulk_advance_from_oracle使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dragnn.python.dragnn_ops的用法示例。


在下文中一共展示了dragnn_ops.bulk_advance_from_oracle方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_greedy_training

# 需要導入模塊: from dragnn.python import dragnn_ops [as 別名]
# 或者: from dragnn.python.dragnn_ops import bulk_advance_from_oracle [as 別名]
def build_greedy_training(self, state, network_states):
    """Advances a batch using oracle paths, returning the overall CE cost.

    Args:
      state: MasterState from the 'AdvanceMaster' op that advances the
          underlying master to this component.
      network_states: dictionary of component NetworkState objects

    Returns:
      (state handle, cost, correct, total): TF ops corresponding to the final
          state after unrolling, the total cost, the total number of correctly
          predicted actions, and the total number of actions.

    Raises:
      RuntimeError: if fixed features are configured.
    """
    logging.info('Building component: %s', self.spec.name)
    if self.spec.fixed_feature:
      raise RuntimeError(
          'Fixed features are not compatible with bulk annotation. '
          'Use the "bulk-features" component instead.')
    linked_embeddings = [
        fetch_linked_embedding(self, network_states, spec)
        for spec in self.spec.linked_feature
    ]

    stride = state.current_batch_size * self.training_beam_size
    with tf.variable_scope(self.name, reuse=True):
      network_tensors = self.network.create([], linked_embeddings, None, None,
                                            True, stride)

    update_network_states(self, network_tensors, network_states, stride)

    logits = self.network.get_logits(network_tensors)
    state.handle, gold = dragnn_ops.bulk_advance_from_oracle(
        state.handle, component=self.name)

    cost, correct, total = build_cross_entropy_loss(logits, gold)
    cost = self.add_regularizer(cost)

    return state.handle, cost, correct, total 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:43,代碼來源:bulk_component.py

示例2: build_greedy_training

# 需要導入模塊: from dragnn.python import dragnn_ops [as 別名]
# 或者: from dragnn.python.dragnn_ops import bulk_advance_from_oracle [as 別名]
def build_greedy_training(self, state, network_states):
    """Advances a batch using oracle paths, returning the overall CE cost.

    Args:
      state: MasterState from the 'AdvanceMaster' op that advances the
          underlying master to this component.
      network_states: dictionary of component NetworkState objects

    Returns:
      (state handle, cost, correct, total): TF ops corresponding to the final
          state after unrolling, the total cost, the total number of correctly
          predicted actions, and the total number of actions.

    Raises:
      RuntimeError: if fixed features are configured.
    """
    logging.info('Building component: %s', self.spec.name)
    if self.spec.fixed_feature:
      raise RuntimeError(
          'Fixed features are not compatible with bulk annotation. '
          'Use the "bulk-features" component instead.')
    linked_embeddings = [
        fetch_linked_embedding(self, network_states, spec)
        for spec in self.spec.linked_feature
    ]

    stride = state.current_batch_size * self.training_beam_size
    self.network.pre_create(stride)
    with tf.variable_scope(self.name, reuse=True):
      network_tensors = self.network.create([], linked_embeddings, None, None,
                                            True, stride)

    update_network_states(self, network_tensors, network_states, stride)

    state.handle, gold = dragnn_ops.bulk_advance_from_oracle(
        state.handle, component=self.name)
    cost, correct, total = self.network.compute_bulk_loss(
        stride, network_tensors, gold)
    if cost is None:
      # The network does not have a custom bulk loss; default to softmax.
      logits = self.network.get_logits(network_tensors)
      cost, correct, total = build_cross_entropy_loss(logits, gold)
    cost = self.add_regularizer(cost)

    return state.handle, cost, correct, total 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:47,代碼來源:bulk_component.py


注:本文中的dragnn.python.dragnn_ops.bulk_advance_from_oracle方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。