當前位置: 首頁>>代碼示例>>Python>>正文


Python digraph_ops.LabelPotentialsFromTokens方法代碼示例

本文整理匯總了Python中dragnn.python.digraph_ops.LabelPotentialsFromTokens方法的典型用法代碼示例。如果您正苦於以下問題:Python digraph_ops.LabelPotentialsFromTokens方法的具體用法?Python digraph_ops.LabelPotentialsFromTokens怎麽用?Python digraph_ops.LabelPotentialsFromTokens使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dragnn.python.digraph_ops的用法示例。


在下文中一共展示了digraph_ops.LabelPotentialsFromTokens方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testLabelPotentialsFromTokens

# 需要導入模塊: from dragnn.python import digraph_ops [as 別名]
# 或者: from dragnn.python.digraph_ops import LabelPotentialsFromTokens [as 別名]
def testLabelPotentialsFromTokens(self):
    with self.test_session():
      tokens = tf.constant([[[1, 2],
                             [3, 4],
                             [5, 6]],
                            [[6, 5],
                             [4, 3],
                             [2, 1]]], tf.float32)


      weights = tf.constant([[ 2,  3],
                             [ 5,  7],
                             [11, 13]], tf.float32)

      labels = digraph_ops.LabelPotentialsFromTokens(tokens, weights)

      self.assertAllEqual(labels.eval(),

                          [[[  8,  19,  37],
                            [ 18,  43,  85],
                            [ 28,  67, 133]],
                           [[ 27,  65, 131],
                            [ 17,  41,  83],
                            [  7,  17,  35]]]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:digraph_ops_test.py

示例2: testLabelPotentialsFromTokens

# 需要導入模塊: from dragnn.python import digraph_ops [as 別名]
# 或者: from dragnn.python.digraph_ops import LabelPotentialsFromTokens [as 別名]
def testLabelPotentialsFromTokens(self):
    with self.test_session():
      tokens = tf.constant([[[1, 2],
                             [3, 4],
                             [5, 6]],
                            [[6, 5],
                             [4, 3],
                             [2, 1]]], tf.float32)  # pyformat: disable


      weights = tf.constant([[ 2,  3],
                             [ 5,  7],
                             [11, 13]], tf.float32)  # pyformat: disable

      labels = digraph_ops.LabelPotentialsFromTokens(tokens, weights)

      self.assertAllEqual(labels.eval(),

                          [[[  8,  19,  37],
                            [ 18,  43,  85],
                            [ 28,  67, 133]],
                           [[ 27,  65, 131],
                            [ 17,  41,  83],
                            [  7,  17,  35]]])  # pyformat: disable 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:26,代碼來源:digraph_ops_test.py

示例3: create

# 需要導入模塊: from dragnn.python import digraph_ops [as 別名]
# 或者: from dragnn.python.digraph_ops import LabelPotentialsFromTokens [as 別名]
def create(self,
             fixed_embeddings,
             linked_embeddings,
             context_tensor_arrays,
             attention_tensor,
             during_training,
             stride=None):
    """Requires |stride|; otherwise see base class."""
    check.NotNone(stride,
                  'BiaffineLabelNetwork requires "stride" and must be called '
                  'in the bulk feature extractor component.')

    # TODO(googleuser): Add dropout during training.
    del during_training

    # Retrieve (possibly averaged) weights.
    weights_pair = self._component.get_variable('weights_pair')
    weights_source = self._component.get_variable('weights_source')
    weights_target = self._component.get_variable('weights_target')
    biases = self._component.get_variable('biases')

    # Extract and shape the source and target token activations.  Use |stride|
    # to collapse batch and beam into a single dimension.
    sources = network_units.lookup_named_tensor('sources', linked_embeddings)
    targets = network_units.lookup_named_tensor('targets', linked_embeddings)
    sources_bxnxs = tf.reshape(sources.tensor, [stride, -1, self._source_dim])
    targets_bxnxt = tf.reshape(targets.tensor, [stride, -1, self._target_dim])

    # Compute the pair, source, and target potentials.
    pairs_bxnxl = digraph_ops.LabelPotentialsFromTokenPairs(sources_bxnxs,
                                                            targets_bxnxt,
                                                            weights_pair)
    sources_bxnxl = digraph_ops.LabelPotentialsFromTokens(sources_bxnxs,
                                                          weights_source)
    targets_bxnxl = digraph_ops.LabelPotentialsFromTokens(targets_bxnxt,
                                                          weights_target)

    # Combine them with the biases.
    labels_bxnxl = pairs_bxnxl + sources_bxnxl + targets_bxnxl + biases

    # Flatten out the batch dimension.
    return [tf.reshape(labels_bxnxl, [-1, self._num_labels])] 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:44,代碼來源:biaffine_units.py


注:本文中的dragnn.python.digraph_ops.LabelPotentialsFromTokens方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。