本文整理匯總了Python中dragnn.python.component.NetworkState方法的典型用法代碼示例。如果您正苦於以下問題:Python component.NetworkState方法的具體用法?Python component.NetworkState怎麽用?Python component.NetworkState使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類dragnn.python.component
的用法示例。
在下文中一共展示了component.NetworkState方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testBulkFeatureIdExtractorOkWithOneFixedFeature
# 需要導入模塊: from dragnn.python import component [as 別名]
# 或者: from dragnn.python.component import NetworkState [as 別名]
def testBulkFeatureIdExtractorOkWithOneFixedFeature(self):
component_spec = spec_pb2.ComponentSpec()
text_format.Parse("""
name: "test"
network_unit {
registered_name: "IdentityNetwork"
}
fixed_feature {
name: "fixed" embedding_dim: -1 size: 1
}
""", component_spec)
with tf.Graph().as_default():
comp = bulk_component.BulkFeatureIdExtractorComponentBuilder(
self.master, component_spec)
# Should not raise errors.
self.network_states[component_spec.name] = component.NetworkState()
comp.build_greedy_training(self.master_state, self.network_states)
self.network_states[component_spec.name] = component.NetworkState()
comp.build_greedy_inference(self.master_state, self.network_states)
示例2: testBulkFeatureIdExtractorOkWithOneFixedFeature
# 需要導入模塊: from dragnn.python import component [as 別名]
# 或者: from dragnn.python.component import NetworkState [as 別名]
def testBulkFeatureIdExtractorOkWithOneFixedFeature(self):
component_spec = spec_pb2.ComponentSpec()
text_format.Parse("""
name: "test"
network_unit {
registered_name: "IdentityNetwork"
}
fixed_feature {
name: "fixed" embedding_dim: -1 size: 1
}
""", component_spec)
comp = bulk_component.BulkFeatureIdExtractorComponentBuilder(
self.master, component_spec)
# Should not raise errors.
self.network_states[component_spec.name] = component.NetworkState()
comp.build_greedy_training(self.master_state, self.network_states)
self.network_states[component_spec.name] = component.NetworkState()
comp.build_greedy_inference(self.master_state, self.network_states)
示例3: testBulkFeatureIdExtractorOkWithMultipleFixedFeatures
# 需要導入模塊: from dragnn.python import component [as 別名]
# 或者: from dragnn.python.component import NetworkState [as 別名]
def testBulkFeatureIdExtractorOkWithMultipleFixedFeatures(self):
component_spec = spec_pb2.ComponentSpec()
text_format.Parse("""
name: "test"
network_unit {
registered_name: "IdentityNetwork"
}
fixed_feature {
name: "fixed1" embedding_dim: -1 size: 1
}
fixed_feature {
name: "fixed2" embedding_dim: -1 size: 1
}
fixed_feature {
name: "fixed3" embedding_dim: -1 size: 1
}
""", component_spec)
comp = bulk_component.BulkFeatureIdExtractorComponentBuilder(
self.master, component_spec)
# Should not raise errors.
self.network_states[component_spec.name] = component.NetworkState()
comp.build_greedy_training(self.master_state, self.network_states)
self.network_states[component_spec.name] = component.NetworkState()
comp.build_greedy_inference(self.master_state, self.network_states)
示例4: build_inference
# 需要導入模塊: from dragnn.python import component [as 別名]
# 或者: from dragnn.python.component import NetworkState [as 別名]
def build_inference(self, handle, use_moving_average=False):
"""Builds an inference pipeline.
This always uses the whole pipeline.
Args:
handle: Handle tensor for the ComputeSession.
use_moving_average: Whether or not to read from the moving
average variables instead of the true parameters. Note: it is not
possible to make gradient updates when this is True.
Returns:
handle: Handle after annotation.
"""
self.read_from_avg = use_moving_average
network_states = {}
for comp in self.components:
network_states[comp.name] = component.NetworkState()
handle = dragnn_ops.init_component_data(
handle, beam_size=comp.inference_beam_size, component=comp.name)
master_state = component.MasterState(handle,
dragnn_ops.batch_size(
handle, component=comp.name))
with tf.control_dependencies([handle]):
handle = comp.build_greedy_inference(master_state, network_states)
handle = dragnn_ops.write_annotations(handle, component=comp.name)
self.read_from_avg = False
return handle
示例5: setUp
# 需要導入模塊: from dragnn.python import component [as 別名]
# 或者: from dragnn.python.component import NetworkState [as 別名]
def setUp(self):
self.master = MockMaster()
self.master_state = component.MasterState(
handle='handle', current_batch_size=2)
self.network_states = {
'mock': component.NetworkState(),
'test': component.NetworkState(),
}
示例6: testBulkFeatureIdExtractorOkWithMultipleFixedFeatures
# 需要導入模塊: from dragnn.python import component [as 別名]
# 或者: from dragnn.python.component import NetworkState [as 別名]
def testBulkFeatureIdExtractorOkWithMultipleFixedFeatures(self):
component_spec = spec_pb2.ComponentSpec()
text_format.Parse("""
name: "test"
network_unit {
registered_name: "IdentityNetwork"
}
fixed_feature {
name: "fixed1" embedding_dim: -1 size: 1
}
fixed_feature {
name: "fixed2" embedding_dim: -1 size: 1
}
fixed_feature {
name: "fixed3" embedding_dim: -1 size: 1
}
""", component_spec)
with tf.Graph().as_default():
comp = bulk_component.BulkFeatureIdExtractorComponentBuilder(
self.master, component_spec)
# Should not raise errors.
self.network_states[component_spec.name] = component.NetworkState()
comp.build_greedy_training(self.master_state, self.network_states)
self.network_states[component_spec.name] = component.NetworkState()
comp.build_greedy_inference(self.master_state, self.network_states)