本文整理匯總了Python中dolfin.Function方法的典型用法代碼示例。如果您正苦於以下問題:Python dolfin.Function方法的具體用法?Python dolfin.Function怎麽用?Python dolfin.Function使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類dolfin
的用法示例。
在下文中一共展示了dolfin.Function方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import dolfin [as 別名]
# 或者: from dolfin import Function [as 別名]
def __init__(self, init=None, val=0.0):
"""
Initialization routine
Args:
init: can either be a FunctionSpace or another fenics_mesh object
val: initial value (default: 0.0)
Raises:
DataError: if init is none of the types above
"""
# if init is another fenic_mesh, do a deepcopy (init by copy)
if isinstance(init, type(self)):
self.values = init.values.copy(deepcopy=True)
# if init is FunctionSpace, create mesh object with val as initial value
elif isinstance(init, df.Function):
self.values = init.copy(deepcopy=True)
elif isinstance(init, df.FunctionSpace):
self.values = df.Function(init)
self.values.vector()[:] = val
else:
raise DataError('something went wrong during %s initialization' % type(init))
示例2: eval_f
# 需要導入模塊: import dolfin [as 別名]
# 或者: from dolfin import Function [as 別名]
def eval_f(self, u, t):
"""
Routine to evaluate both parts of the RHS
Args:
u (dtype_u): current values
t (float): current time
Returns:
dtype_f: the RHS divided into two parts
"""
f = self.dtype_f(self.V)
self.w.assign(u.values)
f.values = df.Function(self.V, df.assemble(self.F))
f = self.__invert_mass_matrix(f)
return f
示例3: __eval_fimpl
# 需要導入模塊: import dolfin [as 別名]
# 或者: from dolfin import Function [as 別名]
def __eval_fimpl(self, u, t):
"""
Helper routine to evaluate the implicit part of the RHS
Args:
u (dtype_u): current values
t (float): current time
Returns:
implicit part of RHS
"""
tmp = self.dtype_u(self.V)
tmp.values = df.Function(self.V, -1.0 * self.params.nu * self.K * u.values.vector())
fimpl = self.__invert_mass_matrix(tmp)
return fimpl
示例4: eval_f
# 需要導入模塊: import dolfin [as 別名]
# 或者: from dolfin import Function [as 別名]
def eval_f(self, u, t):
"""
Routine to evaluate both parts of the RHS
Args:
u (dtype_u): current values
t (float): current time
Returns:
dtype_f: the RHS divided into two parts
"""
self.g.t = t
f = self.dtype_f(self.V)
self.w.assign(u.values)
f.values = df.Function(self.V, df.assemble(self.a_K))
f = self.__invert_mass_matrix(f)
return f
示例5: init_field_fenics
# 需要導入模塊: import dolfin [as 別名]
# 或者: from dolfin import Function [as 別名]
def init_field_fenics(mesh, V, order=3, seed=None):
# https://fenicsproject.org/qa/3975/interpolating-vector-function-from-python-code-to-fenics/
u0 = df.Function(V)
# Extract x and y coordinates of mesh and
# align with dof structure
dim = V.dim()
N = mesh.geometry().dim()
coor = V.tabulate_dof_coordinates().reshape(dim, N)
dofs_V = V.dofmap().dofs()
x = coor[:, 0]
x_f = x[dofs_V]
np.random.seed(seed)
lam = np.random.randn(2, 2*order+1)
c = np.random.rand() - 0.5
k = np.arange(-order, order+1)
kx = np.outer(k, x_f)*2*np.pi
# vector field
f = np.dot(lam[[0]], np.cos(kx)) + np.dot(lam[[1]], np.sin(kx))
f = 2 * f / np.amax(np.abs(f)) + 2.0*c
# Insert values of f into the function u0
u0.vector()[dofs_V] = f[0]
return u0, lam, c
示例6: init_field_fenics
# 需要導入模塊: import dolfin [as 別名]
# 或者: from dolfin import Function [as 別名]
def init_field_fenics(mesh, V, order=4, seed=0):
# https://fenicsproject.org/qa/3975/interpolating-vector-function-from-python-code-to-fenics/
u0 = df.Function(V)
# Extract x and y coordinates of mesh and
# align with dof structure
dim = V.dim()
N = mesh.geometry().dim()
coor = V.tabulate_dof_coordinates().reshape(dim, N)
f0_dofs = V.sub(0).dofmap().dofs()
f1_dofs = V.sub(1).dofmap().dofs()
x = coor[:, 0] # x for fx and fy
y = coor[:, 1] # y for fx and fy
f0_x, f0_y = x[f0_dofs], y[f0_dofs] # x, y of components
# f1_x, f1_y = x[f1_dofs], y[f1_dofs]
np.random.seed(seed)
lam = np.random.randn(2, 2, (2*order+1)**2)
c = -1 + np.random.rand(2) * 2
aa, bb = np.meshgrid(np.arange(-order, order+1), np.arange(-order, order+1))
k = np.stack((aa.flatten(), bb.flatten()), 1)
kx_plus_ly = (np.outer(k[:, 0], f0_x) + np.outer(k[:, 1], f0_y))*2*np.pi
# vector field
f = np.dot(lam[0], np.cos(kx_plus_ly)) + np.dot(lam[1], np.sin(kx_plus_ly))
f = f * 2 / np.amax(np.abs(f), axis=1, keepdims=True) + c[:, None]
# Insert values of fx and fy into the function fe
u0.vector()[f0_dofs] = f[0]
u0.vector()[f1_dofs] = f[1]
return u0, lam, c
示例7: __apply_mass_matrix
# 需要導入模塊: import dolfin [as 別名]
# 或者: from dolfin import Function [as 別名]
def __apply_mass_matrix(self, u):
"""
Routine to apply mass matrix
Args:
u (dtype_u): current values
Returns:
dtype_u: M*u
"""
me = self.dtype_u(self.V)
me.values = df.Function(self.V, self.M * u.values.vector())
return me
示例8: __init__
# 需要導入模塊: import dolfin [as 別名]
# 或者: from dolfin import Function [as 別名]
def __init__(self, problem_params, dtype_u=fenics_mesh, dtype_f=fenics_mesh):
"""
Initialization routine
Args:
problem_params: custom parameters for the example
dtype_u: FEniCS mesh data type (will be passed to parent class)
dtype_f: FEniCS mesh data data type (will be passed to parent class)
"""
# define the Dirichlet boundary
def Boundary(x, on_boundary):
return on_boundary
# these parameters will be used later, so assert their existence
essential_keys = ['c_nvars', 't0', 'family', 'order', 'refinements', 'Du', 'Dv', 'A', 'B']
for key in essential_keys:
if key not in problem_params:
msg = 'need %s to instantiate problem, only got %s' % (key, str(problem_params.keys()))
raise ParameterError(msg)
# set logger level for FFC and dolfin
df.set_log_level(df.WARNING)
logging.getLogger('FFC').setLevel(logging.WARNING)
# set solver and form parameters
df.parameters["form_compiler"]["optimize"] = True
df.parameters["form_compiler"]["cpp_optimize"] = True
# set mesh and refinement (for multilevel)
mesh = df.IntervalMesh(problem_params['c_nvars'], 0, 100)
for i in range(problem_params['refinements']):
mesh = df.refine(mesh)
# define function space for future reference
V = df.FunctionSpace(mesh, problem_params['family'], problem_params['order'])
self.V = V * V
# invoke super init, passing number of dofs, dtype_u and dtype_f
super(fenics_grayscott, self).__init__(self.V, dtype_u, dtype_f, problem_params)
# rhs in weak form
self.w = df.Function(self.V)
q1, q2 = df.TestFunctions(self.V)
self.w1, self.w2 = df.split(self.w)
self.F1 = (-self.params.Du * df.inner(df.nabla_grad(self.w1), df.nabla_grad(q1)) -
self.w1 * (self.w2 ** 2) * q1 + self.params.A * (1 - self.w1) * q1) * df.dx
self.F2 = (-self.params.Dv * df.inner(df.nabla_grad(self.w2), df.nabla_grad(q2)) +
self.w1 * (self.w2 ** 2) * q2 - self.params.B * self.w2 * q2) * df.dx
self.F = self.F1 + self.F2
# mass matrix
u1, u2 = df.TrialFunctions(self.V)
a_M = u1 * q1 * df.dx
M1 = df.assemble(a_M)
a_M = u2 * q2 * df.dx
M2 = df.assemble(a_M)
self.M = M1 + M2
示例9: __init__
# 需要導入模塊: import dolfin [as 別名]
# 或者: from dolfin import Function [as 別名]
def __init__(self, problem_params, dtype_u=fenics_mesh, dtype_f=rhs_fenics_mesh):
"""
Initialization routine
Args:
problem_params (dict): custom parameters for the example
dtype_u: particle data type (will be passed parent class)
dtype_f: acceleration data type (will be passed parent class)
"""
# define the Dirichlet boundary
def Boundary(x, on_boundary):
return on_boundary
# these parameters will be used later, so assert their existence
essential_keys = ['c_nvars', 't0', 'family', 'order', 'refinements', 'nu']
for key in essential_keys:
if key not in problem_params:
msg = 'need %s to instantiate problem, only got %s' % (key, str(problem_params.keys()))
raise ParameterError(msg)
# set logger level for FFC and dolfin
logging.getLogger('ULF').setLevel(logging.WARNING)
logging.getLogger('FFC').setLevel(logging.WARNING)
df.set_log_level(30)
# set solver and form parameters
df.parameters["form_compiler"]["optimize"] = True
df.parameters["form_compiler"]["cpp_optimize"] = True
# set mesh and refinement (for multilevel)
mesh = df.UnitIntervalMesh(problem_params['c_nvars'])
for i in range(problem_params['refinements']):
mesh = df.refine(mesh)
# define function space for future reference
self.V = df.FunctionSpace(mesh, problem_params['family'], problem_params['order'])
tmp = df.Function(self.V)
print('DoFs on this level:', len(tmp.vector()[:]))
# invoke super init, passing number of dofs, dtype_u and dtype_f
super(fenics_heat_weak_imex, self).__init__(self.V, dtype_u, dtype_f, problem_params)
self.g = df.Expression('-sin(a*x[0]) * (sin(t) - b*a*a*cos(t))', a=np.pi, b=self.params.nu, t=self.params.t0,
degree=self.params.order)
# rhs in weak form
self.u = df.TrialFunction(self.V)
self.v = df.TestFunction(self.V)
self.a_K = -self.params.nu * df.inner(df.grad(self.u), df.grad(self.v)) * df.dx
# mass matrix
a_M = self.u * self.v * df.dx
self.M = df.assemble(a_M)
self.bc = df.DirichletBC(self.V, df.Constant(0.0), Boundary)