本文整理匯總了Python中django.contrib.gis.shortcuts.numpy.ndarray方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.ndarray方法的具體用法?Python numpy.ndarray怎麽用?Python numpy.ndarray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類django.contrib.gis.shortcuts.numpy
的用法示例。
在下文中一共展示了numpy.ndarray方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __setitem__
# 需要導入模塊: from django.contrib.gis.shortcuts import numpy [as 別名]
# 或者: from django.contrib.gis.shortcuts.numpy import ndarray [as 別名]
def __setitem__(self, index, value):
"Sets the coordinate sequence value at the given index."
# Checking the input value
if isinstance(value, (list, tuple)):
pass
elif numpy and isinstance(value, numpy.ndarray):
pass
else:
raise TypeError('Must set coordinate with a sequence (list, tuple, or numpy array).')
# Checking the dims of the input
if self.dims == 3 and self._z:
n_args = 3
set_3d = True
else:
n_args = 2
set_3d = False
if len(value) != n_args:
raise TypeError('Dimension of value does not match.')
# Setting the X, Y, Z
self.setX(index, value[0])
self.setY(index, value[1])
if set_3d:
self.setZ(index, value[2])
# #### Internal Routines ####
示例2: data
# 需要導入模塊: from django.contrib.gis.shortcuts import numpy [as 別名]
# 或者: from django.contrib.gis.shortcuts.numpy import ndarray [as 別名]
def data(self, data=None, offset=None, size=None, as_memoryview=False):
"""
Reads or writes pixel values for this band. Blocks of data can
be accessed by specifying the width, height and offset of the
desired block. The same specification can be used to update
parts of a raster by providing an array of values.
Allowed input data types are bytes, memoryview, list, tuple, and array.
"""
if not offset:
offset = (0, 0)
if not size:
size = (self.width - offset[0], self.height - offset[1])
if any(x <= 0 for x in size):
raise ValueError('Offset too big for this raster.')
if size[0] > self.width or size[1] > self.height:
raise ValueError('Size is larger than raster.')
# Create ctypes type array generator
ctypes_array = GDAL_TO_CTYPES[self.datatype()] * (size[0] * size[1])
if data is None:
# Set read mode
access_flag = 0
# Prepare empty ctypes array
data_array = ctypes_array()
else:
# Set write mode
access_flag = 1
# Instantiate ctypes array holding the input data
if isinstance(data, (bytes, six.memoryview)) or (numpy and isinstance(data, numpy.ndarray)):
data_array = ctypes_array.from_buffer_copy(data)
else:
data_array = ctypes_array(*data)
# Access band
capi.band_io(self._ptr, access_flag, offset[0], offset[1],
size[0], size[1], byref(data_array), size[0],
size[1], self.datatype(), 0, 0)
# Return data as numpy array if possible, otherwise as list
if data is None:
if as_memoryview:
return memoryview(data_array)
elif numpy:
return numpy.frombuffer(
data_array, dtype=numpy.dtype(data_array)).reshape(size)
else:
return list(data_array)
else:
self.source._flush()
示例3: data
# 需要導入模塊: from django.contrib.gis.shortcuts import numpy [as 別名]
# 或者: from django.contrib.gis.shortcuts.numpy import ndarray [as 別名]
def data(self, data=None, offset=None, size=None, shape=None, as_memoryview=False):
"""
Reads or writes pixel values for this band. Blocks of data can
be accessed by specifying the width, height and offset of the
desired block. The same specification can be used to update
parts of a raster by providing an array of values.
Allowed input data types are bytes, memoryview, list, tuple, and array.
"""
if not offset:
offset = (0, 0)
if not size:
size = (self.width - offset[0], self.height - offset[1])
if not shape:
shape = size
if any(x <= 0 for x in size):
raise ValueError('Offset too big for this raster.')
if size[0] > self.width or size[1] > self.height:
raise ValueError('Size is larger than raster.')
# Create ctypes type array generator
ctypes_array = GDAL_TO_CTYPES[self.datatype()] * (shape[0] * shape[1])
if data is None:
# Set read mode
access_flag = 0
# Prepare empty ctypes array
data_array = ctypes_array()
else:
# Set write mode
access_flag = 1
# Instantiate ctypes array holding the input data
if isinstance(data, (bytes, six.memoryview)) or (numpy and isinstance(data, numpy.ndarray)):
data_array = ctypes_array.from_buffer_copy(data)
else:
data_array = ctypes_array(*data)
# Access band
capi.band_io(self._ptr, access_flag, offset[0], offset[1],
size[0], size[1], byref(data_array), shape[0],
shape[1], self.datatype(), 0, 0)
# Return data as numpy array if possible, otherwise as list
if data is None:
if as_memoryview:
return memoryview(data_array)
elif numpy:
# reshape() needs a reshape parameter with the height first.
return numpy.frombuffer(
data_array, dtype=numpy.dtype(data_array)
).reshape(tuple(reversed(size)))
else:
return list(data_array)
else:
self._flush()