本文整理匯總了Python中distributed.Client方法的典型用法代碼示例。如果您正苦於以下問題:Python distributed.Client方法的具體用法?Python distributed.Client怎麽用?Python distributed.Client使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類distributed
的用法示例。
在下文中一共展示了distributed.Client方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def main(args):
opts, args = parseArgs(args)
inDF = pd.read_csv(opts.inFile, sep = '\t', index_col = 0, header = 0)
client = Client(processes = False)
if opts.algo == 'GENIE3':
network = genie3(inDF, client_or_address = client)
network.to_csv(opts.outFile, index = False, sep = '\t')
elif opts.algo == 'GRNBoost2':
network = grnboost2(inDF, client_or_address = client)
network.to_csv(opts.outFile, index = False, sep = '\t')
else:
print("Wrong algorithm name. Should either be GENIE3 or GRNBoost2.")
示例2: spawn_cluster_and_client
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def spawn_cluster_and_client(
address: Optional[str] = None, **kwargs
) -> Tuple[Optional[LocalCluster], Optional[Client]]:
"""
If provided an address, create a Dask Client connection.
If not provided an address, create a LocalCluster and Client connection.
If not provided an address, other Dask kwargs are accepted and passed down to the
LocalCluster object.
Notes
-----
When using this function, the processing machine or container must have networking
capabilities enabled to function properly.
"""
cluster = None
if address is not None:
client = Client(address)
log.info(f"Connected to Remote Dask Cluster: {client}")
else:
cluster = LocalCluster(**kwargs)
client = Client(cluster)
log.info(f"Connected to Local Dask Cluster: {client}")
return cluster, client
示例3: shutdown_cluster_and_client
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def shutdown_cluster_and_client(
cluster: Optional[LocalCluster], client: Optional[Client]
) -> Tuple[Optional[LocalCluster], Optional[Client]]:
"""
Shutdown a cluster and client.
Notes
-----
When using this function, the processing machine or container must have networking
capabilities enabled to function properly.
"""
if cluster is not None:
cluster.close()
if client is not None:
client.shutdown()
client.close()
return cluster, client
示例4: test_scheduler_proxy
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def test_scheduler_proxy(proxy, cluster_and_security):
cluster, security = cluster_and_security
proxied_addr = f"gateway://{proxy.tcp_address}/temp"
# Add a route
await proxy.add_route(kind="SNI", sni="temp", target=cluster.scheduler_address)
# Proxy works
async def test_works():
async with Client(proxied_addr, security=security, asynchronous=True) as client:
res = await client.run_on_scheduler(lambda x: x + 1, 1)
assert res == 2
await with_retries(test_works, 5)
# Remove the route
await proxy.remove_route(kind="SNI", sni="temp")
await proxy.remove_route(kind="SNI", sni="temp")
示例5: get_client
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def get_client(self, set_as_default=True):
"""Get a ``Client`` for this cluster.
Returns
-------
client : dask.distributed.Client
"""
client = Client(
self,
security=self.security,
set_as_default=set_as_default,
asynchronous=self.asynchronous,
loop=self.loop,
)
if not self.asynchronous:
self._clients.add(client)
return client
示例6: __init__
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def __init__(self, dask_client=None, client_max_jobs=np.inf,
default_pickle=False, batch_size=1):
super().__init__()
# Assign Client
if dask_client is None:
dask_client = Client()
self.my_client = dask_client
# Client options
self.client_max_jobs = client_max_jobs
# Job state
self.jobs_queued = 0
# For dask, we use cloudpickle by default
self.default_pickle = default_pickle
# Batchsize
self.batch_size = batch_size
示例7: start_cluster
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def start_cluster(diagnostics_port=0):
"Set up a LocalCluster for distributed"
hostname = socket.gethostname()
n_workers = os.cpu_count() // 2
cluster = LocalCluster(ip='localhost',
n_workers=n_workers,
diagnostics_port=diagnostics_port,
memory_limit=6e9)
client = Client(cluster)
params = { 'bokeh_port': cluster.scheduler.services['bokeh'].port,
'user': getpass.getuser(),
'scheduler_ip': cluster.scheduler.ip,
'hostname': hostname, }
print("If the link to the dashboard below doesn't work, run this command on a local terminal to set up a SSH tunnel:")
print()
print(" ssh -N -L {bokeh_port}:{scheduler_ip}:{bokeh_port} {hostname}.nci.org.au -l {user}".format(**params) )
return client
示例8: _exec_calcs
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def _exec_calcs(calcs, parallelize=False, client=None, **compute_kwargs):
"""Execute the given calculations.
Parameters
----------
calcs : Sequence of ``aospy.Calc`` objects
parallelize : bool, default False
Whether to submit the calculations in parallel or not
client : distributed.Client or None
The distributed Client used if parallelize is set to True; if None
a distributed LocalCluster is used.
compute_kwargs : dict of keyword arguments passed to ``Calc.compute``
Returns
-------
A list of the values returned by each Calc object that was executed.
"""
if parallelize:
def func(calc):
"""Wrap _compute_or_skip_on_error to require only the calc
argument"""
if 'write_to_tar' in compute_kwargs:
compute_kwargs['write_to_tar'] = False
return _compute_or_skip_on_error(calc, compute_kwargs)
if client is None:
n_workers = _n_workers_for_local_cluster(calcs)
with distributed.LocalCluster(n_workers=n_workers) as cluster:
with distributed.Client(cluster) as client:
result = _submit_calcs_on_client(calcs, client, func)
else:
result = _submit_calcs_on_client(calcs, client, func)
if compute_kwargs['write_to_tar']:
_serial_write_to_tar(calcs)
return result
else:
return [_compute_or_skip_on_error(calc, compute_kwargs)
for calc in calcs]
示例9: external_client
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def external_client():
# Explicitly specify we want only 4 workers so that when running on
# continuous integration we don't request too many.
cluster = distributed.LocalCluster(n_workers=4)
client = distributed.Client(cluster)
yield client
client.close()
cluster.close()
示例10: __init__
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def __init__(self, cluster_address=None):
super().__init__(parallelism=0)
if cluster_address is None:
cluster_address = conf.get('dask', 'cluster_address')
if not cluster_address:
raise ValueError('Please provide a Dask cluster address in airflow.cfg')
self.cluster_address = cluster_address
# ssl / tls parameters
self.tls_ca = conf.get('dask', 'tls_ca')
self.tls_key = conf.get('dask', 'tls_key')
self.tls_cert = conf.get('dask', 'tls_cert')
self.client: Optional[Client] = None
self.futures: Optional[Dict[Future, TaskInstanceKeyType]] = None
示例11: start
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def start(self) -> None:
if self.tls_ca or self.tls_key or self.tls_cert:
security = Security(
tls_client_key=self.tls_key,
tls_client_cert=self.tls_cert,
tls_ca_file=self.tls_ca,
require_encryption=True,
)
else:
security = None
self.client = Client(self.cluster_address, security=security)
self.futures = {}
示例12: cluster_and_client
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def cluster_and_client(address: Optional[str] = None, **kwargs):
"""
If provided an address, create a Dask Client connection.
If not provided an address, create a LocalCluster and Client connection.
If not provided an address, other Dask kwargs are accepted and passed down to the
LocalCluster object.
These objects will only live for the duration of this context manager.
Examples
--------
>>> with cluster_and_client() as (cluster, client):
... img1 = AICSImage("1.tiff")
... img2 = AICSImage("2.czi")
... other processing
Notes
-----
When using this context manager, the processing machine or container must have
networking capabilities enabled to function properly.
"""
try:
cluster, client = spawn_cluster_and_client(address=address, **kwargs)
yield cluster, client
finally:
shutdown_cluster_and_client(cluster=cluster, client=client)
示例13: cli_option_scheduler
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def cli_option_scheduler(func):
"""Decorator for adding a pre-defined, reusable CLI option `--scheduler`."""
# noinspection PyUnusedLocal
def _callback(ctx: click.Context, param: click.Option, value: Optional[str]):
if not value:
return
address_and_kwargs = value.split("?", 2)
if len(address_and_kwargs) == 2:
address, kwargs_string = address_and_kwargs
kwargs = parse_cli_kwargs(kwargs_string, metavar="SCHEDULER")
else:
address, = address_and_kwargs
kwargs = dict()
try:
# The Dask Client registers itself as the default Dask scheduler, and so runs dask.array used by xarray
import distributed
scheduler_client = distributed.Client(address, **kwargs)
ctx_obj = ctx.ensure_object(dict)
if ctx_obj is not None:
ctx_obj["scheduler"] = scheduler_client
return scheduler_client
except ValueError as e:
raise click.BadParameter(f'Failed to create Dask scheduler client: {e}') from e
return click.option(
'--scheduler',
metavar='SCHEDULER',
help="Enable distributed computing using the Dask scheduler identified by SCHEDULER. "
"SCHEDULER can have the form <address>?<keyword>=<value>,... where <address> "
"is <host> or <host>:<port> and specifies the scheduler's address in your network. "
"For more information on distributed computing "
"using Dask, refer to http://distributed.dask.org/. "
"Pairs of <keyword>=<value> are passed to the Dask client. "
"Refer to http://distributed.dask.org/en/latest/api.html#distributed.Client",
callback=_callback)(func)
示例14: setup
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def setup():
from distributed import LocalCluster, Client
cluster = LocalCluster(n_workers=1, threads_per_worker=1, processes=False)
use_distributed(Client(cluster))
示例15: test_basic
# 需要導入模塊: import distributed [as 別名]
# 或者: from distributed import Client [as 別名]
def test_basic(loop, nanny, mpirun):
with tmpfile(extension="json") as fn:
cmd = mpirun + ["-np", "4", "dask-mpi", "--scheduler-file", fn, nanny]
with popen(cmd):
with Client(scheduler_file=fn) as c:
start = time()
while len(c.scheduler_info()["workers"]) != 3:
assert time() < start + 10
sleep(0.2)
assert c.submit(lambda x: x + 1, 10, workers=1).result() == 11