本文整理匯總了Python中diskcache.Cache方法的典型用法代碼示例。如果您正苦於以下問題:Python diskcache.Cache方法的具體用法?Python diskcache.Cache怎麽用?Python diskcache.Cache使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類diskcache
的用法示例。
在下文中一共展示了diskcache.Cache方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _load_file_cache
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def _load_file_cache(filename,
database_format,
encoding,
frame_id_mask,
strict,
cache_dir):
with open(filename, 'rb') as fin:
key = fin.read()
cache = diskcache.Cache(cache_dir)
try:
return cache[key]
except KeyError:
with fopen(filename, 'r', encoding=encoding) as fin:
database = load(fin,
database_format,
frame_id_mask,
strict)
cache[key] = database
return database
示例2: feature_extract
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def feature_extract(table_name, filepath):
names = []
feats = []
cache = Cache(default_cache_dir)
total = len(open(filepath,'rU').readlines())
cache['total'] = total
current = 0
with open(filepath, 'r') as f:
for line in f:
current += 1
cache['current'] = current
line = line.strip()
line = line.split()
line = line[0]
try:
vec = smiles_to_vec(line)
feats.append(vec)
names.append(line.encode())
except:
continue
print ("extracting feature from smi No. %d , %d molecular in total" %(current, total))
return feats, names
示例3: do_train
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def do_train(table_name, database_path):
if not table_name:
table_name = DEFAULT_TABLE
cache = Cache(default_cache_dir)
try:
vectors, names = feature_extract(database_path, VGGNet())
index_client = milvus_client()
# delete_table(index_client, table_name=table_name)
# time.sleep(1)
status, ok = has_table(index_client, table_name)
if not ok:
print("create table.")
create_table(index_client, table_name=table_name)
print("insert into:", table_name)
status, ids = insert_vectors(index_client, table_name, vectors)
create_index(index_client, table_name)
for i in range(len(names)):
# cache[names[i]] = ids[i]
cache[ids[i]] = names[i]
print("Train finished")
return "Train finished"
except Exception as e:
logging.error(e)
return "Error with {}".format(e)
示例4: test_cache_merfish
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def test_cache_merfish(tmpdir, name, expected, config, monkeypatch):
cache_enabled = (0 != config["slicedimage"]["caching"].get("size_limit", None))
if cache_enabled:
config["slicedimage"]["caching"]["directory"] = str(tmpdir / "caching")
with monkeypatch.context() as mc:
setup_config(config, tmpdir, mc)
# Run 1
data.MERFISH(use_test_data=True).fov().get_image("primary")
# Run 2
if cache_enabled:
data.MERFISH(use_test_data=True).fov().get_image("primary")
# Check constraints
if cache_enabled:
# Enforce smallest size
cache = Cache(str(tmpdir / "caching"))
cache.cull()
cache_size = get_size(tmpdir / "caching")
min, max = expected
assert (min <= cache_size) and (cache_size <= max)
示例5: __init__
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def __init__(
self, _psql_host='localhost', _psql_dbname='data',
_psql_user='', _psql_password='', _cache_path='cache'
):
super().__init__()
self.register_type = RegisterSymbol
self.psql_host: str = _psql_host
self.psql_dbname: str = _psql_dbname
self.psql_user: str = _psql_user
self.psql_password: str = _psql_password
self.table_key: str = None
self.cache: Cache = Cache(_cache_path)
self.market_key: str = 'crypto_{}_{}'
self._psql_con: psycopg2.extensions.connection = None
self._psql_cur: psycopg2.extensions.cursor = None
self.columns: typing.List[str] = []
示例6: _get_cached
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def _get_cached(path):
# 1/ memory cache
if path in JUMBO_FIELDS_MEMORY_CACHE:
return JUMBO_FIELDS_MEMORY_CACHE[path]
# 2/ disk cache
if SIMPLEFLOW_ENABLE_DISK_CACHE:
try:
# NB: this cache may also be triggered on activity workers, where it's not that
# useful. The performance hit should be minimal. To be improved later.
# NB2: cache has to be lazily instantiated here, cache objects do not survive forks,
# see DiskCache docs.
cache = Cache(constants.CACHE_DIR)
# generate a dedicated cache key because this cache may be shared with other
# features of simpleflow at some point
cache_key = "jumbo_fields/" + path.split("/")[-1]
if cache_key in cache:
logger.debug("diskcache: getting key={} from cache_dir={}".format(cache_key, constants.CACHE_DIR))
return cache[cache_key]
except OperationalError:
logger.warning("diskcache: got an OperationalError, skipping cache usage")
# nothing to return, but better be explicit here
return
示例7: _compile_files_cache
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def _compile_files_cache(filenames,
codec,
any_defined_by_choices,
encoding,
cache_dir,
numeric_enums):
key = [codec.encode('ascii')]
if isinstance(filenames, str):
filenames = [filenames]
for filename in filenames:
with open(filename, 'rb') as fin:
key.append(fin.read())
key = b''.join(key)
cache = diskcache.Cache(cache_dir)
try:
return cache[key]
except KeyError:
compiled = compile_dict(parse_files(filenames, encoding),
codec,
any_defined_by_choices,
numeric_enums)
cache[key] = compiled
return compiled
示例8: batch_generator
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def batch_generator(self, dataset: List[Tuple[QASetting, List[Answer]]], batch_size: int, is_eval: bool) \
-> Iterable[Mapping[TensorPort, np.ndarray]]:
"""Preprocesses all instances, batches & shuffles them and generates batches in dicts."""
logger.info("OnlineInputModule pre-processes data on-the-fly in first epoch and caches results for subsequent "
"epochs! That means, first epoch might be slower.")
# only cache training data on file
use_cache = not is_eval and self.shared_resources.config.get('file_cache', False)
if use_cache:
cache_dir = os.path.join(os.environ.get('JACK_TEMP', tempfile.gettempdir()), 'cache')
db = dc.Cache(cache_dir)
db.reset('cull_limit', 0)
logger.info("Caching temporary preprocessed data in %s. You can change cache dir using the"
" JACK_TEMP environment variable which defaults to /tmp/jack." % cache_dir)
else:
db = dict()
preprocessed = set()
def make_generator():
running_idx = 0
for i, batch in enumerate(self._batch_questions(dataset, batch_size, is_eval)):
questions, answers = zip(*batch)
if any(q.id not in preprocessed for q in questions):
annots = self.preprocess(questions, answers)
if questions[0].id is None: # make sure there is an id, if not we set it here
for q in questions:
if q.id is None:
q.id = running_idx
running_idx += 1
for q, a in zip(questions, annots):
preprocessed.add(q.id)
db[q.id] = a
else:
annots = [db[q.id] for q in questions]
yield self.create_batch(annots, is_eval, True)
return GeneratorWithRestart(make_generator)
示例9: thread_status_api
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def thread_status_api():
cache = Cache(default_cache_dir)
return "current: {}, total: {}".format(cache['current'], cache['total'])
示例10: do_load
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def do_load(table_name, database_path):
if not table_name:
table_name = DEFAULT_TABLE
cache = Cache(default_cache_dir)
try:
vectors, names = feature_extract(table_name, database_path)
print("start connetc to milvus")
index_client = milvus_client()
status, ok = has_table(index_client, table_name)
if not ok:
print("create table.")
create_table(index_client, table_name=table_name)
print("insert into:", table_name)
# status, ids = insert_vectors(index_client, table_name, vectors)
total_ids = []
ids_lens = 0
while ids_lens<len(vectors) :
try:
status, ids = insert_vectors(index_client, table_name, vectors[ids_lens:ids_lens+100000])
except:
status, ids = insert_vectors(index_client, table_name, vectors[ids_lens:len(vectors)])
ids_lens += 100000
total_ids += ids
print("ids:",len(ids))
create_index(index_client, table_name)
for i in range(len(names)):
cache[total_ids[i]] = names[i]
print("FP finished")
return "FP finished"
except Exception as e:
logging.error(e)
return "Error with {}".format(e)
示例11: query_smi_from_ids
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def query_smi_from_ids(vids):
res = []
cache = Cache(default_cache_dir)
print("cache:",cache)
for i in vids:
if i in cache:
res.append(cache[i])
return res
示例12: query_name_from_ids
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def query_name_from_ids(vids):
res = []
cache = Cache(default_cache_dir)
for i in vids:
if i in cache:
res.append(cache[i])
return res
示例13: __init__
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def __init__(self, cache_duration=3600, cache_root='/tmp/cortex/tor_project'):
self.session = requests.Session()
self.cache_duration = cache_duration
if self.cache_duration > 0:
self.cache = Cache(cache_root)
self.url = 'http://torstatus.blutmagie.de/query_export.php/Tor_query_EXPORT.csv'
示例14: __init__
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def __init__(self, ttl=86400, cache_duration=3600,
cache_root='/tmp/cortex/tor_project'):
self.session = requests.Session()
self.delta = None
self.cache = None
if ttl > 0:
self.delta = timedelta(seconds=ttl)
if cache_duration > 0:
self.cache = Cache(cache_root)
self.cache_duration = cache_duration
self.url = 'https://check.torproject.org/exit-addresses'
示例15: get_cache
# 需要導入模塊: import diskcache [as 別名]
# 或者: from diskcache import Cache [as 別名]
def get_cache(self):
if self.cache is None:
self.cache_path.parent.mkdir(parents=True, exist_ok=True)
self.cache = dc.Cache(self.cache_path)
return self.cache