當前位置: 首頁>>代碼示例>>Python>>正文


Python discriminator.Discriminator方法代碼示例

本文整理匯總了Python中discriminator.Discriminator方法的典型用法代碼示例。如果您正苦於以下問題:Python discriminator.Discriminator方法的具體用法?Python discriminator.Discriminator怎麽用?Python discriminator.Discriminator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在discriminator的用法示例。


在下文中一共展示了discriminator.Discriminator方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import discriminator [as 別名]
# 或者: from discriminator import Discriminator [as 別名]
def __init__(self, width = 28, height= 28, channels = 1, latent_size=100, epochs =50000, batch=32, checkpoint=50,model_type=-1):
        self.W = width
        self.H = height
        self.C = channels
        self.EPOCHS = epochs
        self.BATCH = batch
        self.CHECKPOINT = checkpoint
        self.model_type=model_type

        self.LATENT_SPACE_SIZE = latent_size

        self.generator = Generator(height=self.H, width=self.W, channels=self.C, latent_size=self.LATENT_SPACE_SIZE)
        self.discriminator = Discriminator(height=self.H, width=self.W, channels=self.C)
        self.gan = GAN(generator=self.generator.Generator, discriminator=self.discriminator.Discriminator)

        self.load_MNIST() 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:18,代碼來源:train.py

示例2: __init__

# 需要導入模塊: import discriminator [as 別名]
# 或者: from discriminator import Discriminator [as 別名]
def __init__(self, width = 28, height= 28, channels = 1, latent_size=100, epochs =50000, batch=32, checkpoint=50,model_type=-1,data_path = ''):
        self.W = width
        self.H = height
        self.C = channels
        self.EPOCHS = epochs
        self.BATCH = batch
        self.CHECKPOINT = checkpoint
        self.model_type=model_type

        self.LATENT_SPACE_SIZE = latent_size

        self.generator = Generator(height=self.H, width=self.W, channels=self.C, latent_size=self.LATENT_SPACE_SIZE,model_type = 'DCGAN')
        self.discriminator = Discriminator(height=self.H, width=self.W, channels=self.C,model_type = 'DCGAN')
        self.gan = GAN(generator=self.generator.Generator, discriminator=self.discriminator.Discriminator)

        #self.load_MNIST()
        self.load_npy(data_path) 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:19,代碼來源:train.py

示例3: __init__

# 需要導入模塊: import discriminator [as 別名]
# 或者: from discriminator import Discriminator [as 別名]
def __init__(self, side=16, latent_size=32, epochs =100, batch=32, checkpoint=50, data_dir = ''):
        self.SIDE=side
        self.EPOCHS = epochs
        self.BATCH = batch
        self.CHECKPOINT = checkpoint

        self.load_3D_MNIST(data_dir)
        self.load_2D_encoded_MNIST()
        self.LATENT_SPACE_SIZE = latent_size
        self.LABELS = [1]

        self.generator = Generator(latent_size=self.LATENT_SPACE_SIZE)
        self.discriminator = Discriminator(side=self.SIDE)
        self.gan = GAN(generator=self.generator.Generator, discriminator=self.discriminator.Discriminator)
        
    # Translate data to color 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:18,代碼來源:train.py

示例4: __init__

# 需要導入模塊: import discriminator [as 別名]
# 或者: from discriminator import Discriminator [as 別名]
def __init__(self, height = 64, width = 64, epochs = 50000, batch = 32, checkpoint = 50, train_data_path_A = '',train_data_path_B = '',test_data_path_A='',test_data_path_B='',lambda_cycle=10.0,lambda_id=1.0):
        self.EPOCHS = epochs
        self.BATCH = batch
        self.RESIZE_HEIGHT = height
        self.RESIZE_WIDTH = width
        self.CHECKPOINT = checkpoint

        self.X_train_A, self.H_A, self.W_A, self.C_A = self.load_data(train_data_path_A)
        self.X_train_B, self.H_B, self.W_B, self.C_B  = self.load_data(train_data_path_B)
        self.X_test_A, self.H_A_test, self.W_A_test, self.C_A_test = self.load_data(test_data_path_A)
        self.X_test_B, self.H_B_test, self.W_B_test, self.C_B_test  = self.load_data(test_data_path_B)

        self.generator_A_to_B = Generator(height=self.H_A, width=self.W_A, channels=self.C_A)
        self.generator_B_to_A = Generator(height=self.H_B, width=self.W_B, channels=self.C_B)

        self.orig_A = Input(shape=(self.W_A, self.H_A, self.C_A))
        self.orig_B = Input(shape=(self.W_B, self.H_B, self.C_B))

        self.fake_B = self.generator_A_to_B.Generator(self.orig_A)
        self.fake_A = self.generator_B_to_A.Generator(self.orig_B)
        self.reconstructed_A = self.generator_B_to_A.Generator(self.fake_B)
        self.reconstructed_B = self.generator_A_to_B.Generator(self.fake_A)
        self.id_A = self.generator_B_to_A.Generator(self.orig_A)
        self.id_B = self.generator_A_to_B.Generator(self.orig_B)


        self.discriminator_A = Discriminator(height=self.H_A, width=self.W_A, channels=self.C_A)
        self.discriminator_B = Discriminator(height=self.H_B, width=self.W_B, channels=self.C_B)
        self.discriminator_A.trainable = False
        self.discriminator_B.trainable = False
        self.valid_A = self.discriminator_A.Discriminator(self.fake_A)
        self.valid_B = self.discriminator_B.Discriminator(self.fake_B)

        model_inputs  = [self.orig_A,self.orig_B]
        model_outputs = [self.valid_A, self.valid_B,self.reconstructed_A,self.reconstructed_B,self.id_A, self.id_B]
        self.gan = GAN(model_inputs=model_inputs,model_outputs=model_outputs,lambda_cycle=lambda_cycle,lambda_id=lambda_id) 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:38,代碼來源:train.py

示例5: train

# 需要導入模塊: import discriminator [as 別名]
# 或者: from discriminator import Discriminator [as 別名]
def train(self):
        for e in range(self.EPOCHS):
            # Train Discriminator
            # Make the training batch for this model be half real, half noise
            # Grab Real Images for this training batch
            count_real_images = int(self.BATCH/2)
            starting_index = randint(0, (len(self.X_train)-count_real_images))
            real_images_raw = self.X_train[ starting_index : (starting_index + count_real_images) ]
            x_real_images = real_images_raw.reshape( count_real_images, self.W, self.H, self.C )
            y_real_labels = np.ones([count_real_images,1])

            # Grab Generated Images for this training batch
            latent_space_samples = self.sample_latent_space(count_real_images)
            x_generated_images = self.generator.Generator.predict(latent_space_samples)
            y_generated_labels = np.zeros([self.BATCH-count_real_images,1])

            # Combine to train on the discriminator
            x_batch = np.concatenate( [x_real_images, x_generated_images] )
            y_batch = np.concatenate( [y_real_labels, y_generated_labels] )

            # Now, train the discriminator with this batch
            discriminator_loss = self.discriminator.Discriminator.train_on_batch(x_batch,y_batch)[0]
        
            # Generate Noise
            x_latent_space_samples = self.sample_latent_space(self.BATCH)
            y_generated_labels = np.ones([self.BATCH,1])
            generator_loss = self.gan.gan_model.train_on_batch(x_latent_space_samples,y_generated_labels)

            print ('Epoch: '+str(int(e))+', [Discriminator :: Loss: '+str(discriminator_loss)+'], [ Generator :: Loss: '+str(generator_loss)+']')
                        
            if e % self.CHECKPOINT == 0 :
                self.plot_checkpoint(e)
        return 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:35,代碼來源:train.py

示例6: __init__

# 需要導入模塊: import discriminator [as 別名]
# 或者: from discriminator import Discriminator [as 別名]
def __init__(self, height=55,width=35, channels=1,epochs =100, batch=16, checkpoint=50,sim_path='',real_path='',data_limit=0.001,generator_steps=2,discriminator_steps=1):
        self.W = width
        self.H = height
        self.C = channels
        self.EPOCHS = epochs
        self.BATCH = batch
        self.CHECKPOINT = checkpoint
        self.DATA_LIMIT=data_limit
        self.GEN_STEPS = generator_steps
        self.DISC_STEPS = discriminator_steps

        self.X_real = self.load_h5py(real_path)
        self.X_sim = self.load_h5py(sim_path)

        self.refiner = Generator(height=self.H, width=self.W, channels=self.C)
        self.discriminator = Discriminator(height=self.H, width=self.W, channels=self.C)
        self.discriminator.trainable = False

        self.synthetic_image = Input(shape=(self.H, self.W, self.C))
        self.real_or_fake = Input(shape=(self.H, self.W, self.C))


        self.refined_image = self.refiner.Generator(self.synthetic_image)
        self.discriminator_output = self.discriminator.Discriminator(self.real_or_fake)
        self.combined = self.discriminator.Discriminator(self.refined_image)

        model_inputs  = [self.synthetic_image]
        model_outputs = [self.refined_image, self.combined]
        self.gan = GAN(model_inputs=model_inputs,model_outputs=model_outputs) 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:31,代碼來源:train.py

示例7: train

# 需要導入模塊: import discriminator [as 別名]
# 或者: from discriminator import Discriminator [as 別名]
def train(self):
        for e in range(self.EPOCHS):

            b = 0
            X_real_temp = deepcopy(self.X_real)
            X_sim_temp = deepcopy(self.X_sim)
            combined_loss = np.zeros(shape=len(self.gan.gan_model.metrics_names))
            discriminator_loss_real = np.zeros(shape=len(self.discriminator.Discriminator.metrics_names))
            discriminator_loss_sim = np.zeros(shape=len(self.discriminator.Discriminator.metrics_names))

            while min(len(X_real_temp),len(X_sim_temp))>self.BATCH:
                # Keep track of Batches
                b=b+1

                count_real_images = int(self.BATCH)
                starting_indexs = randint(0, (min(len(X_real_temp),len(X_sim_temp))-count_real_images))
              
                real_images_raw = X_real_temp[ starting_indexs : (starting_indexs + count_real_images) ]
                real_images = real_images_raw.reshape( count_real_images, self.H, self.W, self.C )

                y_real = np.array([[[1.0, 0.0]] * self.discriminator.Discriminator.output_shape[1]] * self.BATCH)
                
                sim_images_raw = X_sim_temp[ starting_indexs : (starting_indexs + count_real_images) ]
                sim_images = sim_images_raw.reshape( count_real_images, self.H, self.W, self.C )

                y_sim = np.array([[[0.0, 1.0]] * self.discriminator.Discriminator.output_shape[1]] * self.BATCH)

                for _ in range(self.GEN_STEPS):
                    combined_loss = np.add(self.gan.gan_model.train_on_batch(sim_images,[sim_images, y_real]), combined_loss)
        
                for _ in range(self.DISC_STEPS):
                    improved_image_batch = self.refiner.Generator.predict_on_batch(sim_images)
                    discriminator_loss_real = np.add(self.discriminator.Discriminator.train_on_batch(real_images, y_real), discriminator_loss_real)
                    discriminator_loss_sim = np.add(self.discriminator.Discriminator.train_on_batch(improved_image_batch, y_sim),discriminator_loss_sim)

            print ('Epoch: '+str(int(e))+', [Real Discriminator :: Loss: '+str(discriminator_loss_real)+'], [ GAN :: Loss: '+str(combined_loss)+']')
                        
        return 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:40,代碼來源:train.py

示例8: build_discriminator

# 需要導入模塊: import discriminator [as 別名]
# 或者: from discriminator import Discriminator [as 別名]
def build_discriminator(self):
        """initializing the discriminator"""

        with tf.variable_scope("discriminator"):
            self.discriminator = discriminator.Discriminator(n_node=self.n_node, node_emd_init=self.node_embed_init_d) 
開發者ID:hwwang55,項目名稱:GraphGAN,代碼行數:7,代碼來源:graph_gan.py

示例9: __init__

# 需要導入模塊: import discriminator [as 別名]
# 或者: from discriminator import Discriminator [as 別名]
def __init__(self,
               X_train_file='',
               Y_train_file='',
               batch_size=1,
               image_size=256,
               use_lsgan=True,
               norm='instance',
               lambda1=10,
               lambda2=10,
               learning_rate=2e-4,
               beta1=0.5,
               ngf=64
              ):
    """
    Args:
      X_train_file: string, X tfrecords file for training
      Y_train_file: string Y tfrecords file for training
      batch_size: integer, batch size
      image_size: integer, image size
      lambda1: integer, weight for forward cycle loss (X->Y->X)
      lambda2: integer, weight for backward cycle loss (Y->X->Y)
      use_lsgan: boolean
      norm: 'instance' or 'batch'
      learning_rate: float, initial learning rate for Adam
      beta1: float, momentum term of Adam
      ngf: number of gen filters in first conv layer
    """
    self.lambda1 = lambda1
    self.lambda2 = lambda2
    self.use_lsgan = use_lsgan
    use_sigmoid = not use_lsgan
    self.batch_size = batch_size
    self.image_size = image_size
    self.learning_rate = learning_rate
    self.beta1 = beta1
    self.X_train_file = X_train_file
    self.Y_train_file = Y_train_file

    self.is_training = tf.placeholder_with_default(True, shape=[], name='is_training')

    self.G = Generator('G', self.is_training, ngf=ngf, norm=norm, image_size=image_size)
    self.D_Y = Discriminator('D_Y',
        self.is_training, norm=norm, use_sigmoid=use_sigmoid)
    self.F = Generator('F', self.is_training, ngf=ngf, norm=norm, image_size=image_size)
    self.D_X = Discriminator('D_X',
        self.is_training, norm=norm, use_sigmoid=use_sigmoid)

    self.fake_x = tf.placeholder(tf.float32,
        shape=[batch_size, image_size, image_size, 3])
    self.fake_y = tf.placeholder(tf.float32,
        shape=[batch_size, image_size, image_size, 3]) 
開發者ID:vanhuyz,項目名稱:CycleGAN-TensorFlow,代碼行數:53,代碼來源:model.py

示例10: train

# 需要導入模塊: import discriminator [as 別名]
# 或者: from discriminator import Discriminator [as 別名]
def train(self):
        for e in range(self.EPOCHS):
            b = 0
            X_train_temp = deepcopy(self.X_train)
            while len(X_train_temp)>self.BATCH:
                # Keep track of Batches
                b=b+1

                # Train Discriminator
                # Make the training batch for this model be half real, half noise
                # Grab Real Images for this training batch
                if self.flipCoin():
                    count_real_images = int(self.BATCH)
                    starting_index = randint(0, (len(X_train_temp)-count_real_images))
                    real_images_raw = X_train_temp[ starting_index : (starting_index + count_real_images) ]
                    #self.plot_check_batch(b,real_images_raw)
                    # Delete the images used until we have none left
                    X_train_temp = np.delete(X_train_temp,range(starting_index,(starting_index + count_real_images)),0)
                    x_batch = real_images_raw.reshape( count_real_images, self.W, self.H, self.C )
                    y_batch = np.ones([count_real_images,1])
                else:
                    # Grab Generated Images for this training batch
                    latent_space_samples = self.sample_latent_space(self.BATCH)
                    x_batch = self.generator.Generator.predict(latent_space_samples)
                    y_batch = np.zeros([self.BATCH,1])

                # Now, train the discriminator with this batch
                discriminator_loss = self.discriminator.Discriminator.train_on_batch(x_batch,y_batch)[0]
            
                # In practice, flipping the label when training the generator improves convergence
                if self.flipCoin(chance=0.9):
                    y_generated_labels = np.ones([self.BATCH,1])
                else:
                    y_generated_labels = np.zeros([self.BATCH,1])
                x_latent_space_samples = self.sample_latent_space(self.BATCH)
                generator_loss = self.gan.gan_model.train_on_batch(x_latent_space_samples,y_generated_labels)
    
                print ('Batch: '+str(int(b))+', [Discriminator :: Loss: '+str(discriminator_loss)+'], [ Generator :: Loss: '+str(generator_loss)+']')
                if b % self.CHECKPOINT == 0 :
                    label = str(e)+'_'+str(b)
                    self.plot_checkpoint(label)

            print ('Epoch: '+str(int(e))+', [Discriminator :: Loss: '+str(discriminator_loss)+'], [ Generator :: Loss: '+str(generator_loss)+']')
                        
            if e % self.CHECKPOINT == 0 :
                self.plot_checkpoint(e)
        return 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:49,代碼來源:train.py

示例11: train

# 需要導入模塊: import discriminator [as 別名]
# 或者: from discriminator import Discriminator [as 別名]
def train(self):
        for e in range(self.EPOCHS):
            b = 0
            X_train_A_temp = deepcopy(self.X_train_A)
            X_train_B_temp = deepcopy(self.X_train_B)

            number_of_batches = len(self.X_train_A)
        
            for b in range(number_of_batches):
                # Train Discriminator
                # Grab Real Images for this training batch
                starting_ind = randint(0, (len(X_train_A_temp)-1))
                real_images_raw_A = X_train_A_temp[ starting_ind : (starting_ind + 1) ]
                real_images_raw_B = X_train_B_temp[ starting_ind : (starting_ind + 1) ]

                # Delete the images used until we have none left
                X_train_A_temp = np.delete(X_train_A_temp,range(starting_ind,(starting_ind + 1)),0)
                X_train_B_temp = np.delete(X_train_B_temp,range(starting_ind,(starting_ind + 1)),0)

                batch_A = real_images_raw_A.reshape( 1, self.W, self.H, self.C )
                batch_B = real_images_raw_B.reshape( 1, self.W, self.H, self.C )

                # PatchGAN
                y_valid = np.ones((1,)+(int(self.W / 2**4), int(self.W / 2**4), 1))
                y_fake = np.zeros((1,)+(int(self.W / 2**4), int(self.W / 2**4), 1))

                fake_A = self.generator.Generator.predict(batch_B)

                # Now, train the discriminator with this batch of reals
                discriminator_loss_real = self.discriminator.Discriminator.train_on_batch([batch_A,batch_B],y_valid)[0]
                discriminator_loss_fake = self.discriminator.Discriminator.train_on_batch([fake_A,batch_B],y_fake)[0]
                full_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)

                generator_loss = self.gan.gan_model.train_on_batch([batch_A, batch_B],[y_valid,batch_A])    

                print ('Batch: '+str(int(b))+', [Full Discriminator :: Loss: '+str(full_loss)+'], [ Generator :: Loss: '+str(generator_loss)+']')
                if b % self.CHECKPOINT == 0 :
                    label = str(e)+'_'+str(b)
                    self.plot_checkpoint(label)

            print ('Epoch: '+str(int(e))+', [Full Discriminator :: Loss:'+str(full_loss)+'], [ Generator :: Loss: '+str(generator_loss)+']')
                        
        return 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:45,代碼來源:train.py

示例12: train

# 需要導入模塊: import discriminator [as 別名]
# 或者: from discriminator import Discriminator [as 別名]
def train(self):
        
        count_generated_images = int(self.BATCH/2)
        count_real_images = int(self.BATCH/2)
        for e in range(self.EPOCHS):
            for label in self.LABELS:

                # Grab the Real 3D Samples
                all_3D_samples = self.X_train_3D[np.where(self.Y_train_3D==label)]
                starting_index = randint(0, (len(all_3D_samples)-count_real_images))
                real_3D_samples = all_3D_samples[ starting_index : int((starting_index + count_real_images)) ]
                y_real_labels =  np.ones([count_generated_images,1])

                # Grab Generated Images for this training batch
                all_encoded_samples = self.X_train_2D_encoded[np.where(self.Y_train_2D==label)]
                starting_index = randint(0, (len(all_encoded_samples)-count_generated_images))
                batch_encoded_samples = all_encoded_samples[ starting_index : int((starting_index + count_generated_images)) ]
                batch_encoded_samples = batch_encoded_samples.reshape( count_generated_images, 1, 1, 1,self.LATENT_SPACE_SIZE)

                x_generated_3D_samples = self.generator.Generator.predict(batch_encoded_samples)
                y_generated_labels = np.zeros([count_generated_images,1])

                # Combine to train on the discriminator
                x_batch = np.concatenate( [real_3D_samples, x_generated_3D_samples] )
                y_batch = np.concatenate( [y_real_labels, y_generated_labels] )

                # Now, train the discriminator with this batch
                self.discriminator.Discriminator.trainable = False
                discriminator_loss = self.discriminator.Discriminator.train_on_batch(x_batch,y_batch)[0]
                self.discriminator.Discriminator.trainable = True

                # Generate Noise
                starting_index = randint(0, (len(all_encoded_samples)-self.BATCH))
                x_batch_encoded_samples = all_encoded_samples[ starting_index : int((starting_index + self.BATCH)) ]
                x_batch_encoded_samples = x_batch_encoded_samples.reshape( int(self.BATCH), 1, 1, 1,self.LATENT_SPACE_SIZE)
                y_generated_labels = np.ones([self.BATCH,1])
                generator_loss = self.gan.gan_model.train_on_batch(x_batch_encoded_samples,y_generated_labels)
                print ('Epoch: '+str(int(e))+' Label: '+str(int(label))+', [Discriminator :: Loss: '+str(discriminator_loss)+'], [ Generator :: Loss: '+str(generator_loss)+']')
                if e % self.CHECKPOINT == 0 and e != 0 :
                    self.plot_checkpoint(e,label)
            
        return 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:44,代碼來源:train.py

示例13: __init__

# 需要導入模塊: import discriminator [as 別名]
# 或者: from discriminator import Discriminator [as 別名]
def __init__(self,
               X_train_file='',
               Y_train_file='',
               batch_size=1,
               image_size1=256,
               image_size2=256,
               use_lsgan=True,
               norm='instance',
               lambda1=10.0,
               lambda2=10.0,
               learning_rate=1e-4,
               beta1=0.5,
               ngf=64
              ):
    """
    Args:
      X_train_file: string, X tfrecords file for training
      Y_train_file: string Y tfrecords file for training
      batch_size: integer, batch size
      image_size: integer, image size
      lambda1: integer, weight for forward cycle loss (X->Y->X)
      lambda2: integer, weight for backward cycle loss (Y->X->Y)
      use_lsgan: boolean
      norm: 'instance' or 'batch'
      learning_rate: float, initial learning rate for Adam
      beta1: float, momentum term of Adam
      ngf: number of gen filters in first conv layer
    """
    self.lambda1 = lambda1
    self.lambda2 = lambda2
    self.use_lsgan = use_lsgan
    use_sigmoid = not use_lsgan
    self.batch_size = batch_size
    self.image_size1 = image_size1
    self.image_size2 = image_size2
    self.learning_rate = learning_rate
    self.beta1 = beta1
    self.X_train_file = X_train_file
    self.Y_train_file = Y_train_file

    self.is_training = tf.placeholder_with_default(True, shape=[], name='is_training')


    self.G = Generator('G', self.is_training, ngf=ngf, norm=norm, image_size1=image_size1, image_size2=image_size2)
    self.D_Y = Discriminator('D_Y',
        self.is_training, norm=norm, use_sigmoid=use_sigmoid)
    self.F = Generator('F', self.is_training, ngf=ngf, norm=norm, image_size1=image_size1, image_size2=image_size2)
    self.D_X = Discriminator('D_X',
        self.is_training, norm=norm, use_sigmoid=use_sigmoid)

    self.fake_x = tf.placeholder(tf.float32,
        shape=[batch_size, image_size1, image_size2, 3])
    self.fake_y = tf.placeholder(tf.float32,
        shape=[batch_size, image_size1, image_size2, 3])

    self.vgg = vgg16.Vgg16() 
開發者ID:engindeniz,項目名稱:Cycle-Dehaze,代碼行數:58,代碼來源:model.py


注:本文中的discriminator.Discriminator方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。