本文整理匯總了Python中dimod.Vartype方法的典型用法代碼示例。如果您正苦於以下問題:Python dimod.Vartype方法的具體用法?Python dimod.Vartype怎麽用?Python dimod.Vartype使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類dimod
的用法示例。
在下文中一共展示了dimod.Vartype方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: random_sample_seq
# 需要導入模塊: import dimod [as 別名]
# 或者: from dimod import Vartype [as 別名]
def random_sample_seq(size, vartype):
"""Return a random sample.
Args:
size (int):
Sample size (number of variables).
vartype (:class:`dimod.Vartype`):
Variable type; for example, `Vartype.SPIN`, `BINARY`, or `{-1, 1}`.
Returns:
dict: Random sample of `size` in length, with values from `vartype`.
Examples:
>>> random_sample_seq(4, dimod.BINARY) # doctest: +SKIP
{0: 0, 1: 1, 2: 0, 3: 0}
"""
values = list(vartype.value)
return {i: random.choice(values) for i in range(size)}
示例2: generate_random_chimera_problem
# 需要導入模塊: import dimod [as 別名]
# 或者: from dimod import Vartype [as 別名]
def generate_random_chimera_problem(adjacency, h_range, j_range, offset=0, vartype=dimod.BINARY):
"""Generate a random chimera problem, with
h int chosen randomly from h_range, j int chosen randomly from j_range.
Typically: h_range = [0, 0] and j_range = [-k, +k].
Args:
adjacency (dict[/{node: {neighbor_node_1, ...}}): Adjacency dictionary
h_range (tuple/(upper,lower)): bounds for h
j_range (tuple/(upper,lower)): bounds for j
offset (float): energy offset
vartype (dimod.Vartype): BQM's vartype
Returns:
dimod.BinaryQuadraticModel
"""
h = {n: random.randint(*h_range) for n in adjacency.keys()}
J = {(n,e): random.randint(*j_range)
for n, edges in adjacency.items()
for e in edges
if e > n}
return dimod.BinaryQuadraticModel(h, J, offset, vartype)
示例3: energy
# 需要導入模塊: import dimod [as 別名]
# 或者: from dimod import Vartype [as 別名]
def energy(self, solution, vartype, feed_dict=None):
"""Returns energy of the solution.
Args:
solution (list[bit]/dict[label, bit]/dict[index, bit]):
The solution returned from solvers.
vartype (:class:`dimod.Vartype`/str/set, optional):
Variable type of the solution.
Accepted input values:
* :class:`.Vartype.SPIN`, ``'SPIN'``, ``{-1, 1}``
* :class:`.Vartype.BINARY`, ``'BINARY'``, ``{0, 1}``
feed_dict (dict[str, float]):
Specify the placeholder values.
Returns:
float: energy of the solution.
"""
dict_binary_solution = self._parse_solution(solution, vartype)
bqm = self.compiled_qubo.evaluate(feed_dict)
return bqm.energy(dict_binary_solution)
示例4: load
# 需要導入模塊: import dimod [as 別名]
# 或者: from dimod import Vartype [as 別名]
def load(fp, cls=BinaryQuadraticModel, vartype=None):
"""Load a COOrdinate formatted binary quadratic model from a file."""
pattern = re.compile(_LINE_REGEX)
vartype_pattern = re.compile(_VARTYPE_HEADER_REGEX)
triplets = []
for line in fp:
triplets.extend(pattern.findall(line))
vt = vartype_pattern.findall(line)
if vt:
if vartype is None:
vartype = vt[0]
else:
if isinstance(vartype, str):
vartype = Vartype[vartype]
else:
vartype = Vartype(vartype)
if Vartype[vt[0]] != vartype:
raise ValueError("vartypes from headers and/or inputs do not match")
if vartype is None:
raise ValueError("vartype must be provided either as a header or as an argument")
bqm = cls.empty(vartype)
for u, v, bias in triplets:
if u == v:
bqm.add_variable(int(u), float(bias))
else:
bqm.add_interaction(int(u), int(v), float(bias))
return bqm
示例5: assert_consistent_constraint
# 需要導入模塊: import dimod [as 別名]
# 或者: from dimod import Vartype [as 別名]
def assert_consistent_constraint(const):
assert isinstance(const, Constraint)
assert hasattr(const, 'configurations')
assert isinstance(const.configurations, frozenset)
assert hasattr(const, 'func')
assert callable(const.func)
assert hasattr(const, 'variables')
assert isinstance(const.variables, tuple)
assert len(const) == len(const.variables)
assert hasattr(const, 'vartype')
assert isinstance(const.vartype, Vartype)
for config in const.configurations:
assert isinstance(config, tuple)
assert len(config) == len(const.variables)
msg = "config {} does not match constraint vartype '{}'".format(config, const.vartype)
assert set(config).issubset(const.vartype.value), msg
assert const.func(*config), 'Constraint.func does not evaluate True for {}'.format(config)
assert const.check(dict(zip(const.variables, config)))
for config in itertools.product(const.vartype.value, repeat=len(const)):
if config in const.configurations:
assert const.func(*config)
assert const.check(dict(zip(const.variables, config)))
else:
assert not const.func(*config)
assert not const.check(dict(zip(const.variables, config)))
示例6: _parse_solution
# 需要導入模塊: import dimod [as 別名]
# 或者: from dimod import Vartype [as 別名]
def _parse_solution(self, solution, vartype):
"""Parse solution.
Args:
solution (list[bit]/dict[label, bit]/dict[index, bit]):
The solution returned from solvers.
vartype (:class:`dimod.Vartype`/str/set, optional):
Variable type of the solution. Accepted input values
* :class:`.Vartype.SPIN`, ``'SPIN'``, ``{-1, 1}``
* :class:`.Vartype.BINARY`, ``'BINARY'``, ``{0, 1}``
Returns:
dict[label, bit]: dictionary of label and binary bit.
"""
if isinstance(solution, list) or isinstance(solution, np.ndarray):
if len(self.variable_order) != len(solution):
raise ValueError("Illegal solution. Length of the solution is different from"
"that of self.variable_order.")
dict_binary_solution = dict(zip(self.variable_order, solution))
elif isinstance(solution, dict):
if set(solution.keys()) == set(self.variable_order):
dict_binary_solution = solution
elif set(solution.keys()) == set(range(len(self.variable_order))):
dict_binary_solution = {self.index2label[index]: v for index, v in solution.items()}
else:
raise ValueError("Illegal solution. The keys of the solution"
" should be same as self.variable_order")
else:
raise TypeError("Unexpected type of solution.")
if vartype == dimod.SPIN:
dict_binary_solution = {k: (v + 1) / 2 for k, v in dict_binary_solution.items()}
return dict_binary_solution
示例7: from_func
# 需要導入模塊: import dimod [as 別名]
# 或者: from dimod import Vartype [as 別名]
def from_func(cls, func, variables, vartype, name=None):
"""Construct a constraint from a validation function.
Args:
func (function):
Function that evaluates True when the variables satisfy the constraint.
variables (iterable):
Iterable of variable labels.
vartype (:class:`~dimod.Vartype`/str/set):
Variable type for the constraint. Accepted input values:
* :attr:`~dimod.Vartype.SPIN`, ``'SPIN'``, ``{-1, 1}``
* :attr:`~dimod.Vartype.BINARY`, ``'BINARY'``, ``{0, 1}``
name (string, optional, default='Constraint'):
Name for the constraint.
Examples:
This example creates a constraint that binary variables `a` and `b`
are not equal.
>>> import operator
>>> const = dwavebinarycsp.Constraint.from_func(operator.ne, ['a', 'b'], 'BINARY')
>>> print(const.name)
Constraint
>>> (0, 1) in const.configurations
True
This example creates a constraint that :math:`out = NOT(x)`
for spin variables.
>>> def not_(y, x): # y=NOT(x) for spin variables
... return (y == -x)
...
>>> const = dwavebinarycsp.Constraint.from_func(
... not_,
... ['out', 'in'],
... {1, -1},
... name='not_spin')
>>> print(const.name)
not_spin
>>> (1, -1) in const.configurations
True
"""
variables = tuple(variables)
configurations = frozenset(config
for config in itertools.product(vartype.value, repeat=len(variables))
if func(*config))
return cls(func, configurations, variables, vartype, name)
示例8: from_configurations
# 需要導入模塊: import dimod [as 別名]
# 或者: from dimod import Vartype [as 別名]
def from_configurations(cls, configurations, variables, vartype, name=None):
"""Construct a constraint from valid configurations.
Args:
configurations (iterable[tuple]):
Valid configurations of the variables. Each configuration is a tuple of variable
assignments ordered by :attr:`~Constraint.variables`.
variables (iterable):
Iterable of variable labels.
vartype (:class:`~dimod.Vartype`/str/set):
Variable type for the constraint. Accepted input values:
* :attr:`~dimod.Vartype.SPIN`, ``'SPIN'``, ``{-1, 1}``
* :attr:`~dimod.Vartype.BINARY`, ``'BINARY'``, ``{0, 1}``
name (string, optional, default='Constraint'):
Name for the constraint.
Examples:
This example creates a constraint that variables `a` and `b` are not equal.
>>> const = dwavebinarycsp.Constraint.from_configurations([(0, 1), (1, 0)],
... ['a', 'b'], dwavebinarycsp.BINARY)
>>> print(const.name)
Constraint
>>> (0, 0) in const.configurations # Order matches variables: a,b
False
This example creates a constraint based on specified valid configurations
that represents an OR gate for spin variables.
>>> const = dwavebinarycsp.Constraint.from_configurations(
... [(-1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)],
... ['y', 'x1', 'x2'],
... dwavebinarycsp.SPIN, name='or_spin')
>>> print(const.name)
or_spin
>>> (1, 1, -1) in const.configurations # Order matches variables: y,x1,x2
True
"""
def func(*args): return args in configurations
return cls(func, configurations, variables, vartype, name)
#
# Special Methods
#
示例9: fix_variable
# 需要導入模塊: import dimod [as 別名]
# 或者: from dimod import Vartype [as 別名]
def fix_variable(self, v, value):
"""Fix the value of a variable and remove it from the constraint.
Args:
v (variable):
Variable in the constraint to be set to a constant value.
val (int):
Value assigned to the variable. Values must match the :class:`.Vartype` of the
constraint.
Examples:
This example creates a constraint that :math:`a \\ne b` on binary variables,
fixes variable a to 0, and tests two candidate solutions.
>>> const = dwavebinarycsp.Constraint.from_func(operator.ne,
... ['a', 'b'], dwavebinarycsp.BINARY)
>>> const.fix_variable('a', 0)
>>> const.check({'b': 1})
True
>>> const.check({'b': 0})
False
"""
variables = self.variables
try:
idx = variables.index(v)
except ValueError:
raise ValueError("given variable {} is not part of the constraint".format(v))
if value not in self.vartype.value:
raise ValueError("expected value to be in {}, received {} instead".format(self.vartype.value, value))
configurations = frozenset(config[:idx] + config[idx + 1:] # exclude the fixed var
for config in self.configurations
if config[idx] == value)
if not configurations:
raise UnsatError("fixing {} to {} makes this constraint unsatisfiable".format(v, value))
variables = variables[:idx] + variables[idx + 1:]
self.configurations = configurations
self.variables = variables
def func(*args): return args in configurations
self.func = func
self.name = '{} ({} fixed to {})'.format(self.name, v, value)
示例10: create
# 需要導入模塊: import dimod [as 別名]
# 或者: from dimod import Vartype [as 別名]
def create(name, shape, vartype):
"""Create a new array with Spins or Binary.
Args:
name (str): Name of the matrix. It is used as a part of the label of variables.
For example, if the name is 'x',
the label of `(i, j)` th variable will be ``x[i][j]``.
shape (int/tuple[int]): Dimensions of the array.
vartype (:class:`dimod.Vartype`/str/set, optional):
Variable type of the solution.
Accepted input values:
* :class:`.Vartype.SPIN`, ``'SPIN'``, ``{-1, 1}``
* :class:`.Vartype.BINARY`, ``'BINARY'``, ``{0, 1}``
Example:
>>> from pyqubo import Array
>>> array = Array.create('x', shape=(2, 2), vartype='BINARY')
>>> array
Array([[Binary(x[0][0]), Binary(x[0][1])],
[Binary(x[1][0]), Binary(x[1][1])]])
>>> array[0]
Array([Binary(x[0][0]), Binary(x[0][1])])
"""
if isinstance(shape, int):
shape = shape,
if vartype == dimod.BINARY:
var_class = Binary
else:
var_class = Spin
def var_name(_name, index):
return "{name}{index_repr}".format(
name=_name, index_repr=''.join(['[%d]' % i for i in index]))
def create_structure(index):
return {var_name(name, index): tuple([name] + index)}
def generator(index):
return var_class(var_name(name, index), create_structure(index))
return Array._create_with_generator(shape, generator)
示例11: decode_solution
# 需要導入模塊: import dimod [as 別名]
# 或者: from dimod import Vartype [as 別名]
def decode_solution(self, solution, vartype, feed_dict=None):
"""Returns decoded solution.
Args:
solution (list[bit]/dict[label, bit]/dict[index, bit]):
The solution returned from solvers.
vartype (:class:`dimod.Vartype`/str/set, optional):
Variable type of the solution.
Accepted input values:
* :class:`.Vartype.SPIN`, ``'SPIN'``, ``{-1, 1}``
* :class:`.Vartype.BINARY`, ``'BINARY'``, ``{0, 1}``
feed_dict (dict[str, float]):
Specify the placeholder values.
Returns:
tuple(dict, dict, float): Tuple of the decoded solution,
broken constraints and energy.
Structure of decoded_solution is defined by :obj:`structure`.
"""
def put_value_with_keys(dict_body, keys, value):
for key in keys[:-1]:
if key not in dict_body:
dict_body[key] = {}
dict_body = dict_body[key]
dict_body[keys[-1]] = value
decoded_solution = {}
dict_bin_solution = self._parse_solution(solution, vartype)
for label, bit in dict_bin_solution.items():
if label in self.structure:
if vartype == dimod.SPIN:
out_value = 2 * bit - 1
elif vartype == dimod.BINARY:
out_value = bit
put_value_with_keys(decoded_solution, self.structure[label], out_value)
# Check satisfaction of constraints
broken_const = {}
for label, const in self.constraints.items():
energy = const.energy(dict_bin_solution, feed_dict)
if energy > 0.0:
result_value = {var: dict_bin_solution[var] for var in
reduce(or_, [k.keys for k in const.polynomial.keys()])}
broken_const[label] = {"result": result_value, "penalty": energy}
elif energy < 0.0:
raise ValueError("The energy of the constraint \"{label}\" is {energy}."
"But an energy of constraints should not be negative."
.format(label=label, energy=energy))
problem_energy = self.energy(dict_bin_solution, dimod.BINARY, feed_dict)
return decoded_solution, broken_const, problem_energy