本文整理匯總了Python中dill.load方法的典型用法代碼示例。如果您正苦於以下問題:Python dill.load方法的具體用法?Python dill.load怎麽用?Python dill.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類dill
的用法示例。
在下文中一共展示了dill.load方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def load(path, num_cpu=16):
"""Load act function that was returned by learn function.
Parameters
----------
path: str
path to the act function pickle
num_cpu: int
number of cpus to use for executing the policy
Returns
-------
act: ActWrapper
function that takes a batch of observations
and returns actions.
"""
return ActWrapper.load(path, num_cpu=num_cpu)
示例2: __init__
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def __init__(self):
self.executables = OrderedDict()
self.loaded = False # TODO: Think about it. Do we need load?
self.branches = 1
self.trials = 2
self.workers = 1
self.bar = False
self.name = 'research'
self.worker_class = PipelineWorker
self.devices = None
self.domain = None
self.n_iters = None
self.timeout = 5
self.n_configs = None
self.n_reps = None
self.n_configs = None
self.repeat_each = None
self.logger = FileLogger()
# update parameters for config. None or dict with keys (function, params, cache)
self._update_config = None
# update parameters for domain. None or dict with keys (function, each)
self._update_domain = None
self.n_updates = 0
示例3: __init__
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def __init__(self, *args, **kwargs):
self.full_config = Config()
self.session = kwargs.get('session', None)
self.graph = tf.Graph() if self.session is None else self.session.graph
self._graph_context = None
self._train_lock = threading.Lock()
# Parameters of batch processing: splitting batches into parts and/or using multiple devices to process data
self.microbatch = None
self.devices = []
self.leading_device = None
self.device_to_scope = {}
self.scope_to_device = {}
self.multi_device = False
# Private storage for often used tensors
self._attrs = dict()
# Save/load things
self._saver = None
self.preserve = ['_attrs', 'microbatch',
'devices', 'leading_device', 'device_to_scope', 'scope_to_device', 'multi_device']
super().__init__(*args, **kwargs)
示例4: prepare_dataloaders
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def prepare_dataloaders(opt, device):
batch_size = opt.batch_size
data = pickle.load(open(opt.data_pkl, 'rb'))
opt.max_token_seq_len = data['settings'].max_len
opt.src_pad_idx = data['vocab']['src'].vocab.stoi[Constants.PAD_WORD]
opt.trg_pad_idx = data['vocab']['trg'].vocab.stoi[Constants.PAD_WORD]
opt.src_vocab_size = len(data['vocab']['src'].vocab)
opt.trg_vocab_size = len(data['vocab']['trg'].vocab)
#========= Preparing Model =========#
if opt.embs_share_weight:
assert data['vocab']['src'].vocab.stoi == data['vocab']['trg'].vocab.stoi, \
'To sharing word embedding the src/trg word2idx table shall be the same.'
fields = {'src': data['vocab']['src'], 'trg':data['vocab']['trg']}
train = Dataset(examples=data['train'], fields=fields)
val = Dataset(examples=data['valid'], fields=fields)
train_iterator = BucketIterator(train, batch_size=batch_size, device=device, train=True)
val_iterator = BucketIterator(val, batch_size=batch_size, device=device)
return train_iterator, val_iterator
示例5: test_create
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def test_create(self, mock):
value = 1
function_name = 'test_function'
@Lambda(name=function_name, bucket='test', key='test', client=self.client)
def foo():
return value
package = DeploymentPackage(foo)
zfp = zipfile.ZipFile(StringIO(package.zip_bytes(foo.dumped_code)), "r")
func = dill.load(zfp.open('.lambda.dump'))
self.assertEqual(func(), value)
resp_create = foo.create()
self.assertEqual(resp_create['FunctionName'], function_name)
# moto doesn't support ZipFile only lambda deployments, while
# aws doen't allow other arguments when scpesifying ZipFile argument
#resp_get = foo.get()
#self.assertEqual(resp_get['Configuration']['FunctionName'], function_name)
示例6: load_embedding_matrix
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def load_embedding_matrix(
self,
embedding_matrix: np.ndarray,
name: str = 'embedding'
):
"""
Load an embedding matrix.
Load an embedding matrix into the model's embedding layer. The name
of the embedding layer is specified by `name`. For models with only
one embedding layer, set `name='embedding'` when creating the keras
layer, and use the default `name` when load the matrix. For models
with more than one embedding layers, initialize keras layer with
different layer names, and set `name` accordingly to load a matrix
to a chosen layer.
:param embedding_matrix: Embedding matrix to be loaded.
:param name: Name of the layer. (default: 'embedding')
"""
self.get_embedding_layer(name).set_weights([embedding_matrix])
示例7: _register_dill
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def _register_dill(self):
def encode(obj, dumper=dill_dumps):
return dumper(obj, protocol=pickle_protocol)
def decode(s):
return pickle_loads(str_to_bytes(s), load=dill_load)
registry.register(
name='dill',
encoder=encode,
decoder=decode,
content_type='application/x-python-serialize',
content_encoding='binary'
)
# the same as upstream, but we need to copy it here so we can access it
示例8: load
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def load(path, act_params, num_cpu=16):
"""Load act function that was returned by learn function.
Parameters
----------
path: str
path to the act function pickle
num_cpu: int
number of cpus to use for executing the policy
Returns
-------
act: ActWrapper
function that takes a batch of observations
and returns actions.
"""
return ActWrapper.load(path, num_cpu=num_cpu, act_params=act_params)
示例9: _runAllDeferredFunctions
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def _runAllDeferredFunctions(self, fileObj):
"""
Read and run deferred functions until EOF from the given open file.
"""
try:
while True:
# Load each function
deferredFunction = dill.load(fileObj)
logger.debug("Loaded deferred function %s" % repr(deferredFunction))
# Run it
self._runDeferredFunction(deferredFunction)
except EOFError as e:
# This is expected and means we read all the complete entries.
logger.debug("Out of deferred functions!")
pass
示例10: read_model
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def read_model(file_name):
print('Reading model from file: %s' % file_name)
model = dill.load(open(file_name, 'rb'))
return model
示例11: create_fields
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def create_fields(opt):
spacy_langs = ['en', 'fr', 'de', 'es', 'pt', 'it', 'nl']
if opt.src_lang not in spacy_langs:
print('invalid src language: ' + opt.src_lang + 'supported languages : ' + spacy_langs)
if opt.trg_lang not in spacy_langs:
print('invalid trg language: ' + opt.trg_lang + 'supported languages : ' + spacy_langs)
print("loading spacy tokenizers...")
t_src = tokenize(opt.src_lang)
t_trg = tokenize(opt.trg_lang)
TRG = data.Field(lower=True, tokenize=t_trg.tokenizer, init_token='<sos>', eos_token='<eos>')
SRC = data.Field(lower=True, tokenize=t_src.tokenizer)
if opt.load_weights is not None:
try:
print("loading presaved fields...")
SRC = pickle.load(open(f'{opt.load_weights}/SRC.pkl', 'rb'))
TRG = pickle.load(open(f'{opt.load_weights}/TRG.pkl', 'rb'))
except:
print("error opening SRC.pkl and TXT.pkl field files, please ensure they are in " + opt.load_weights + "/")
quit()
return(SRC, TRG)
示例12: create_dataset
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def create_dataset(opt, SRC, TRG):
print("creating dataset and iterator... ")
raw_data = {'src' : [line for line in opt.src_data], 'trg': [line for line in opt.trg_data]}
df = pd.DataFrame(raw_data, columns=["src", "trg"])
mask = (df['src'].str.count(' ') < opt.max_strlen) & (df['trg'].str.count(' ') < opt.max_strlen)
df = df.loc[mask]
df.to_csv("translate_transformer_temp.csv", index=False)
data_fields = [('src', SRC), ('trg', TRG)]
train = data.TabularDataset('./translate_transformer_temp.csv', format='csv', fields=data_fields)
train_iter = MyIterator(train, batch_size=opt.batchsize, device=opt.device,
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
batch_size_fn=batch_size_fn, train=True, shuffle=True)
os.remove('translate_transformer_temp.csv')
if opt.load_weights is None:
SRC.build_vocab(train)
TRG.build_vocab(train)
if opt.checkpoint > 0:
try:
os.mkdir("weights")
except:
print("weights folder already exists, run program with -load_weights weights to load them")
quit()
pickle.dump(SRC, open('weights/SRC.pkl', 'wb'))
pickle.dump(TRG, open('weights/TRG.pkl', 'wb'))
opt.src_pad = SRC.vocab.stoi['<pad>']
opt.trg_pad = TRG.vocab.stoi['<pad>']
opt.train_len = get_len(train_iter)
return train_iter
示例13: undillify
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def undillify(url, str_version = False):
'''Reads back in a serialized object matching the filename of the given url'''
fn = os.path.join('webpage_cache', strip_url(url) + '.dill')
string_version = dill.load(open(fn, 'rb'))
if str_version:
return string_version
else:
return BeautifulSoup(string_version)
示例14: load
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def load(filename):
""" Wrapper to load an object from a file."""
with tf.gfile.Open(filename, 'rb') as f:
return pickle.load(f)
示例15: load
# 需要導入模塊: import dill [as 別名]
# 或者: from dill import load [as 別名]
def load(filename):
with tf.gfile.Open(filename, 'rb') as f:
return pickle.load(f)