當前位置: 首頁>>代碼示例>>Python>>正文


Python dill.dump方法代碼示例

本文整理匯總了Python中dill.dump方法的典型用法代碼示例。如果您正苦於以下問題:Python dill.dump方法的具體用法?Python dill.dump怎麽用?Python dill.dump使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dill的用法示例。


在下文中一共展示了dill.dump方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: save

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def save(self, dirpath: typing.Union[str, Path]):
        """
        Save the :class:`DataPack` object.

        A saved :class:`DataPack` is represented as a directory with a
        :class:`DataPack` object (transformed user input as features and
        context), it will be saved by `pickle`.

        :param dirpath: directory path of the saved :class:`DataPack`.
        """
        dirpath = Path(dirpath)
        data_file_path = dirpath.joinpath(self.DATA_FILENAME)

        if not dirpath.exists():
            dirpath.mkdir(parents=True)

        dill.dump(self, open(data_file_path, mode='wb')) 
開發者ID:NTMC-Community,項目名稱:MatchZoo-py,代碼行數:19,代碼來源:data_pack.py

示例2: save

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def save(self, dirpath: typing.Union[str, Path]):
        """
        Save the :class:`DSSMPreprocessor` object.

        A saved :class:`DSSMPreprocessor` is represented as a directory with
        the `context` object (fitted parameters on training data), it will
        be saved by `pickle`.

        :param dirpath: directory path of the saved :class:`DSSMPreprocessor`.
        """
        dirpath = Path(dirpath)
        data_file_path = dirpath.joinpath(self.DATA_FILENAME)

        if not dirpath.exists():
            dirpath.mkdir(parents=True)

        dill.dump(self, open(data_file_path, mode='wb')) 
開發者ID:NTMC-Community,項目名稱:MatchZoo-py,代碼行數:19,代碼來源:base_preprocessor.py

示例3: exec_in_new_process

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def exec_in_new_process(func, *args, **kargs):
    """Launches a function in a separate process. Takes variable number of arguments which are passed to the function.
    The process IS NOT FORKED by 'exec'ed.

    :param func: Function to be executed in a separate process.
    :param args: position arguments passed to the func
    :param kargs: named arguments passed to the func
    :return:
    """

    # Store function handle and arguments into a pickle
    new_process_runnable_handle, new_process_runnable_file = mkstemp(suffix='runnable')
    with os.fdopen(new_process_runnable_handle, 'wb') as f:
        dill.dump((func, args, kargs), f)

    bootstrap_package_name = '{}.{}'.format(__package__, os.path.splitext(os.path.basename(__file__))[0])
    # Popen this script (__main__) below will be an entry point
    process = subprocess.Popen(args=[sys.executable,
                                     '-m',
                                     bootstrap_package_name,
                                     new_process_runnable_file],
                               executable=sys.executable)
    return process 
開發者ID:uber,項目名稱:petastorm,代碼行數:25,代碼來源:exec_in_new_process.py

示例4: test_requirements_analyzer__model_works

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def test_requirements_analyzer__model_works(tmpdir):
    from proxy_model import model
    reqs = get_object_requirements(model)

    for r in reqs.custom:
        for p, src in r.to_sources_dict().items():
            join = os.path.join(tmpdir, p)
            os.makedirs(os.path.dirname(join), exist_ok=True)
            with open(join, 'w') as f:
                f.write(src)

    with open(os.path.join(tmpdir, 'model.pkl'), 'wb') as f:
        dill.dump(model, f)

    shutil.copy(fs.current_module_path('use_model.py'), tmpdir)

    cp = subprocess.run('python use_model.py', shell=True, cwd=tmpdir)
    assert cp.returncode == 0 
開發者ID:zyfra,項目名稱:ebonite,代碼行數:20,代碼來源:test_cases.py

示例5: save

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def save(self, dirpath: typing.Union[str, Path]):
        """
        Save the :class:`DataPack` object.

        A saved :class:`DataPack` is represented as a directory with a
        :class:`DataPack` object (transformed user input as features and
        context), it will be saved by `pickle`.

        :param dirpath: directory path of the saved :class:`DataPack`.
        """
        dirpath = Path(dirpath)
        data_file_path = dirpath.joinpath(self.DATA_FILENAME)

        if data_file_path.exists():
            raise FileExistsError(
                f'{data_file_path} already exist, fail to save')
        elif not dirpath.exists():
            dirpath.mkdir()

        dill.dump(self, open(data_file_path, mode='wb')) 
開發者ID:NTMC-Community,項目名稱:MatchZoo,代碼行數:22,代碼來源:data_pack.py

示例6: save

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def save(self, dirpath: typing.Union[str, Path]):
        """
        Save the :class:`DSSMPreprocessor` object.

        A saved :class:`DSSMPreprocessor` is represented as a directory with
        the `context` object (fitted parameters on training data), it will
        be saved by `pickle`.

        :param dirpath: directory path of the saved :class:`DSSMPreprocessor`.
        """
        dirpath = Path(dirpath)
        data_file_path = dirpath.joinpath(self.DATA_FILENAME)

        if data_file_path.exists():
            raise FileExistsError(
                f'{data_file_path} instance exist, fail to save.')
        elif not dirpath.exists():
            dirpath.mkdir()

        dill.dump(self, open(data_file_path, mode='wb')) 
開發者ID:NTMC-Community,項目名稱:MatchZoo,代碼行數:22,代碼來源:base_preprocessor.py

示例7: main

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def main(cwd=''):
    """
    Main driver

    Args:
        cwd (str): current working directory (need this for testing)
    """

    # Loop over variants, exact and inexact solves
    results = {}
    for variant in ['semi-implicit-stab']:

        results[(variant, 'exact')] = run_SDC_variant(variant=variant)

    # dump result
    fname = 'data/results_SDC_variants_AllenCahn_1E-03'
    file = open(cwd + fname + '.pkl', 'wb')
    dill.dump(results, file)
    file.close()
    assert os.path.isfile(cwd + fname + '.pkl'), 'ERROR: dill did not create file'

    # visualize
    show_results(fname, cwd=cwd) 
開發者ID:Parallel-in-Time,項目名稱:pySDC,代碼行數:25,代碼來源:AllenCahn_contracting_circle_FFT.py

示例8: main

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def main(cwd=''):
    """
    Main driver

    Args:
        cwd (str): current working directory (need this for testing)
    """

    # Loop over variants, exact and inexact solves
    results = {}
    for variant in ['multi-implicit', 'semi-implicit', 'fully-implicit', 'semi-implicit_v2', 'multi-implicit_v2']:

        results[(variant, 'exact')] = run_SDC_variant(variant=variant, inexact=False)
        results[(variant, 'inexact')] = run_SDC_variant(variant=variant, inexact=True)

    # dump result
    fname = 'data/results_SDC_variants_AllenCahn_1E-03'
    file = open(cwd + fname + '.pkl', 'wb')
    dill.dump(results, file)
    file.close()
    assert os.path.isfile(cwd + fname + '.pkl'), 'ERROR: dill did not create file'

    # visualize
    # show_results(fname, cwd=cwd) 
開發者ID:Parallel-in-Time,項目名稱:pySDC,代碼行數:26,代碼來源:AllenCahn_contracting_circle_SDC.py

示例9: write

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def write(self, fileName):
            """
            Write the current state into a temporary file then atomically rename it to the main
            state file.

            :param str fileName: Path to the state file.
            """
            with open(fileName + '.tmp', 'wb') as fH:
                # Based on answer by user "Mark" at:
                # http://stackoverflow.com/questions/2709800/how-to-pickle-yourself
                # We can't pickle nested classes. So we have to pickle the variables of the class
                # If we ever change this, we need to ensure it doesn't break FileID
                dill.dump(self.__dict__, fH)
            os.rename(fileName + '.tmp', fileName)

    # Functions related to logging 
開發者ID:DataBiosphere,項目名稱:toil,代碼行數:18,代碼來源:abstractFileStore.py

示例10: _createJobStateFile

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def _createJobStateFile(self):
        """
        Create the job state file for the current job and fill in the required
        values.

        :return: Path to the job state file
        :rtype: str
        """
        jobStateFile = os.path.join(self.localTempDir, '.jobState')
        jobState = {'jobProcessName': get_process_name(self.workDir),
                    'jobName': self.jobName,
                    'jobDir': self.localTempDir}
        with open(jobStateFile + '.tmp', 'wb') as fH:
            dill.dump(jobState, fH)
        os.rename(jobStateFile + '.tmp', jobStateFile)
        return jobStateFile 
開發者ID:DataBiosphere,項目名稱:toil,代碼行數:18,代碼來源:nonCachingFileStore.py

示例11: saga_cv_cache

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def saga_cv_cache(*args):

    arghash = sha1(repr(args).encode('utf-8')).hexdigest()
    fn = "res/baseline_linear_{}.dill".format(arghash)

    try:
        with open(fn, 'rb') as f:
            out = dill.load(f)
        logging.info("Loaded cached version.")
    except FileNotFoundError:
        logging.info("Computing...")
        out = saga_cv(*args)
        with open(fn, 'wb') as f:
            dill.dump(out, f)

    return out 
開發者ID:vene,項目名稱:marseille,代碼行數:18,代碼來源:exp_baseline_linear.py

示例12: persist

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def persist(self, X, y, thesaurus):
        """
        Save the data and the processed thesaurus.

        Parameters
        ----------
        X: sparse matrix
            The train data: Will be compressed.
        y: sparse matrix
            The label data: Will be compressed.
        thesaurus: ThesaurusReader
            ThesaurusReader object: Will be pickled.
        """
        print('Persisting features to disk')
        self._delete_old_files()
        self._save(self._persist_name('X'), X)
        self._save(self._persist_name('y'), y)
        with open(self._persist_name('TR'), mode='wb') as f:
            pickle.dump(thesaurus, f) 
開發者ID:quadflor,項目名稱:Quadflor,代碼行數:21,代碼來源:persister.py

示例13: evaluate_checkpoint

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def evaluate_checkpoint(sess,model):
    dataset = 'cifar'

    #with tf.Session() as sess:
    # Iterate over the samples batch-by-batch
    num_batches = int(math.ceil(num_eval_examples / eval_batch_size))
    adv_x_samples=[]
    adv_y_samples=[]
    for ibatch in range(num_batches):
      bstart = ibatch * eval_batch_size
      bend = min(bstart + eval_batch_size, num_eval_examples)

      x_batch = mnist.test.images[bstart:bend,:]
      y_batch = mnist.test.labels[bstart:bend]

      x_batch_adv = attack.perturb(x_batch, y_batch, sess)
      if(ibatch == 0):
          adv_x_samples = x_batch_adv
          adv_y_samples = y_batch
      else:
          adv_x_samples = np.concatenate((adv_x_samples, x_batch_adv), axis = 0)
          adv_y_samples = np.concatenate((adv_y_samples, y_batch), axis = 0)
    if(args.attack == 'xent'):
      atck = 'pgd'
      f = open(os.path.join(args.log_dir, 'Adv_%s_%s.p' % (dataset, atck)), "w")
    elif(args.attack == 'cw_pgd'):
      atck = 'cw_pgd'
      f = open(os.path.join(args.log_dir, 'Adv_%s_%s.p' % (dataset, atck)), "w")
    else:
      f = open(os.path.join(args.log_dir, "custom.p"), "w")
    pickle.dump({"adv_input":adv_x_samples,"adv_labels":adv_y_samples},f)
    f.close() 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:34,代碼來源:gen_noisy.py

示例14: write_dict

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def write_dict(self, d, fn, args):
        path = os.path.join(args.log_dir, "{}-{}-{}-tau_{:.4f}.pkl".format(args.name, self.ds_name, fn, self.tau))
        if args.verbose: print("Saving stats in", path)
        pickle.dump(d, open(path, "wb")) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:6,代碼來源:fingerprint.py

示例15: dump

# 需要導入模塊: import dill [as 別名]
# 或者: from dill import dump [as 別名]
def dump(self, args):

        dicts = [{"args": args}, self.counts, self.counts_legal, self.counts_correct]
        fns = ["args", "counts", "counts_legal", "counts_correct"]

        for result, fn in zip(dicts, fns):
            self.write_dict(result, fn, args) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:9,代碼來源:fingerprint.py


注:本文中的dill.dump方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。