當前位置: 首頁>>代碼示例>>Python>>正文


Python deep_cnn.softmax_preds方法代碼示例

本文整理匯總了Python中differential_privacy.multiple_teachers.deep_cnn.softmax_preds方法的典型用法代碼示例。如果您正苦於以下問題:Python deep_cnn.softmax_preds方法的具體用法?Python deep_cnn.softmax_preds怎麽用?Python deep_cnn.softmax_preds使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在differential_privacy.multiple_teachers.deep_cnn的用法示例。


在下文中一共展示了deep_cnn.softmax_preds方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ensemble_preds

# 需要導入模塊: from differential_privacy.multiple_teachers import deep_cnn [as 別名]
# 或者: from differential_privacy.multiple_teachers.deep_cnn import softmax_preds [as 別名]
def ensemble_preds(dataset, nb_teachers, stdnt_data):
  """
  Given a dataset, a number of teachers, and some input data, this helper
  function queries each teacher for predictions on the data and returns
  all predictions in a single array. (That can then be aggregated into
  one single prediction per input using aggregation.py (cf. function
  prepare_student_data() below)
  :param dataset: string corresponding to mnist, cifar10, or svhn
  :param nb_teachers: number of teachers (in the ensemble) to learn from
  :param stdnt_data: unlabeled student training data
  :return: 3d array (teacher id, sample id, probability per class)
  """

  # Compute shape of array that will hold probabilities produced by each
  # teacher, for each training point, and each output class
  result_shape = (nb_teachers, len(stdnt_data), FLAGS.nb_labels)

  # Create array that will hold result
  result = np.zeros(result_shape, dtype=np.float32)

  # Get predictions from each teacher
  for teacher_id in xrange(nb_teachers):
    # Compute path of checkpoint file for teacher model with ID teacher_id
    if FLAGS.deeper:
      ckpt_path = FLAGS.teachers_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_teachers_' + str(teacher_id) + '_deep.ckpt-' + str(FLAGS.teachers_max_steps - 1) #NOLINT(long-line)
    else:
      ckpt_path = FLAGS.teachers_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_teachers_' + str(teacher_id) + '.ckpt-' + str(FLAGS.teachers_max_steps - 1)  # NOLINT(long-line)

    # Get predictions on our training data and store in result array
    result[teacher_id] = deep_cnn.softmax_preds(stdnt_data, ckpt_path)

    # This can take a while when there are a lot of teachers so output status
    print("Computed Teacher " + str(teacher_id) + " softmax predictions")

  return result 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:37,代碼來源:train_student.py

示例2: train_student

# 需要導入模塊: from differential_privacy.multiple_teachers import deep_cnn [as 別名]
# 或者: from differential_privacy.multiple_teachers.deep_cnn import softmax_preds [as 別名]
def train_student(dataset, nb_teachers):
  """
  This function trains a student using predictions made by an ensemble of
  teachers. The student and teacher models are trained using the same
  neural network architecture.
  :param dataset: string corresponding to mnist, cifar10, or svhn
  :param nb_teachers: number of teachers (in the ensemble) to learn from
  :return: True if student training went well
  """
  assert input.create_dir_if_needed(FLAGS.train_dir)

  # Call helper function to prepare student data using teacher predictions
  stdnt_dataset = prepare_student_data(dataset, nb_teachers, save=True)

  # Unpack the student dataset
  stdnt_data, stdnt_labels, stdnt_test_data, stdnt_test_labels = stdnt_dataset

  # Prepare checkpoint filename and path
  if FLAGS.deeper:
    ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_student_deeper.ckpt' #NOLINT(long-line)
  else:
    ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_student.ckpt'  # NOLINT(long-line)

  # Start student training
  assert deep_cnn.train(stdnt_data, stdnt_labels, ckpt_path)

  # Compute final checkpoint name for student (with max number of steps)
  ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)

  # Compute student label predictions on remaining chunk of test set
  student_preds = deep_cnn.softmax_preds(stdnt_test_data, ckpt_path_final)

  # Compute teacher accuracy
  precision = metrics.accuracy(student_preds, stdnt_test_labels)
  print('Precision of student after training: ' + str(precision))

  return True 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:39,代碼來源:train_student.py

示例3: train_teacher

# 需要導入模塊: from differential_privacy.multiple_teachers import deep_cnn [as 別名]
# 或者: from differential_privacy.multiple_teachers.deep_cnn import softmax_preds [as 別名]
def train_teacher(dataset, nb_teachers, teacher_id):
  """
  This function trains a teacher (teacher id) among an ensemble of nb_teachers
  models for the dataset specified.
  :param dataset: string corresponding to dataset (svhn, cifar10)
  :param nb_teachers: total number of teachers in the ensemble
  :param teacher_id: id of the teacher being trained
  :return: True if everything went well
  """
  # If working directories do not exist, create them
  assert input.create_dir_if_needed(FLAGS.data_dir)
  assert input.create_dir_if_needed(FLAGS.train_dir)

  # Load the dataset
  if dataset == 'svhn':
    train_data,train_labels,test_data,test_labels = input.ld_svhn(extended=True)
  elif dataset == 'cifar10':
    train_data, train_labels, test_data, test_labels = input.ld_cifar10()
  elif dataset == 'mnist':
    train_data, train_labels, test_data, test_labels = input.ld_mnist()
  else:
    print("Check value of dataset flag")
    return False

  # Retrieve subset of data for this teacher
  data, labels = input.partition_dataset(train_data,
                                         train_labels,
                                         nb_teachers,
                                         teacher_id)

  print("Length of training data: " + str(len(labels)))

  # Define teacher checkpoint filename and full path
  if FLAGS.deeper:
    filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '_deep.ckpt'
  else:
    filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '.ckpt'
  ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + filename

  # Perform teacher training
  assert deep_cnn.train(data, labels, ckpt_path)

  # Append final step value to checkpoint for evaluation
  ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)

  # Retrieve teacher probability estimates on the test data
  teacher_preds = deep_cnn.softmax_preds(test_data, ckpt_path_final)

  # Compute teacher accuracy
  precision = metrics.accuracy(teacher_preds, test_labels)
  print('Precision of teacher after training: ' + str(precision))

  return True 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:55,代碼來源:train_teachers.py

示例4: train_teacher

# 需要導入模塊: from differential_privacy.multiple_teachers import deep_cnn [as 別名]
# 或者: from differential_privacy.multiple_teachers.deep_cnn import softmax_preds [as 別名]
def train_teacher(dataset, nb_teachers, teacher_id):
  """
  This function trains a teacher (teacher id) among an ensemble of nb_teachers
  models for the dataset specified.
  :param dataset: string corresponding to dataset (svhn, cifar10)
  :param nb_teachers: total number of teachers in the ensemble
  :param teacher_id: id of the teacher being trained
  :return: True if everything went well
  """
  # If working directories do not exist, create them
  assert input.create_dir_if_needed(FLAGS.data_dir)
  assert input.create_dir_if_needed(FLAGS.train_dir)

  # Load the dataset
  if dataset == 'svhn':
    train_data,train_labels,test_data,test_labels = input.ld_svhn(extended=True)
  elif dataset == 'cifar10':
    train_data, train_labels, test_data, test_labels = input.ld_cifar10()
  elif dataset == 'mnist':
    train_data, train_labels, test_data, test_labels = input.ld_mnist()
  else:
    print("Check value of dataset flag")
    return False
    
  # Retrieve subset of data for this teacher
  data, labels = input.partition_dataset(train_data, 
                                         train_labels, 
                                         nb_teachers, 
                                         teacher_id)

  print("Length of training data: " + str(len(labels)))

  # Define teacher checkpoint filename and full path
  if FLAGS.deeper:
    filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '_deep.ckpt'
  else:
    filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '.ckpt'
  ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + filename

  # Perform teacher training
  assert deep_cnn.train(data, labels, ckpt_path)

  # Append final step value to checkpoint for evaluation
  ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)

  # Retrieve teacher probability estimates on the test data
  teacher_preds = deep_cnn.softmax_preds(test_data, ckpt_path_final)

  # Compute teacher accuracy
  precision = metrics.accuracy(teacher_preds, test_labels)
  print('Precision of teacher after training: ' + str(precision))

  return True 
開發者ID:coderSkyChen,項目名稱:Action_Recognition_Zoo,代碼行數:55,代碼來源:train_teachers.py


注:本文中的differential_privacy.multiple_teachers.deep_cnn.softmax_preds方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。