本文整理匯總了Python中dgl.DGLGraph方法的典型用法代碼示例。如果您正苦於以下問題:Python dgl.DGLGraph方法的具體用法?Python dgl.DGLGraph怎麽用?Python dgl.DGLGraph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類dgl
的用法示例。
在下文中一共展示了dgl.DGLGraph方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: forward
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def forward(self, pos, centroids, feat=None):
dev = pos.device
group_idx = self.frnn(pos, centroids)
B, N, _ = pos.shape
glist = []
for i in range(B):
center = torch.zeros((N)).to(dev)
center[centroids[i]] = 1
src = group_idx[i].contiguous().view(-1)
dst = centroids[i].view(-1, 1).repeat(1, self.n_neighbor).view(-1)
unified = torch.cat([src, dst])
uniq, inv_idx = torch.unique(unified, return_inverse=True)
src_idx = inv_idx[:src.shape[0]]
dst_idx = inv_idx[src.shape[0]:]
g = dgl.DGLGraph((src_idx.cpu(), dst_idx.cpu()), readonly=True)
g.ndata['pos'] = pos[i][uniq]
g.ndata['center'] = center[uniq]
if feat is not None:
g.ndata['feat'] = feat[i][uniq]
glist.append(g)
bg = dgl.batch(glist)
return bg
示例2: build_graph
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def build_graph(self):
graph = dgl.DGLGraph()
ent_len = len(self.raw_ent_text)
rel_len = len(self.raw_rel) # treat the repeated relation as different nodes, refer to the author's code
graph.add_nodes(ent_len, {'type': torch.ones(ent_len) * NODE_TYPE['entity']})
graph.add_nodes(1, {'type': torch.ones(1) * NODE_TYPE['root']})
graph.add_nodes(rel_len*2, {'type': torch.ones(rel_len*2) * NODE_TYPE['relation']})
graph.add_edges(ent_len, torch.arange(ent_len))
graph.add_edges(torch.arange(ent_len), ent_len)
graph.add_edges(torch.arange(ent_len+1+rel_len*2), torch.arange(ent_len+1+rel_len*2))
adj_edges = []
for i, r in enumerate(self.raw_rel):
assert len(r)==3, str(r)
st, rt, ed = r
st_ent, ed_ent = self.raw_ent_text.index(st), self.raw_ent_text.index(ed)
# according to the edge_softmax operator, we need to reverse the graph
adj_edges.append([ent_len+1+2*i, st_ent])
adj_edges.append([ed_ent, ent_len+1+2*i])
adj_edges.append([ent_len+1+2*i+1, ed_ent])
adj_edges.append([st_ent, ent_len+1+2*i+1])
if len(adj_edges)>0:
graph.add_edges(*list(map(list, zip(*adj_edges))))
return graph
示例3: build_graph_from_triplets
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def build_graph_from_triplets(num_nodes, num_rels, triplets):
""" Create a DGL graph. The graph is bidirectional because RGCN authors
use reversed relations.
This function also generates edge type and normalization factor
(reciprocal of node incoming degree)
"""
g = dgl.DGLGraph()
g.add_nodes(num_nodes)
src, rel, dst = triplets
src, dst = np.concatenate((src, dst)), np.concatenate((dst, src))
rel = np.concatenate((rel, rel + num_rels))
edges = sorted(zip(dst, src, rel))
dst, src, rel = np.array(edges).transpose()
g.add_edges(src, dst)
norm = comp_deg_norm(g)
print("# nodes: {}, # edges: {}".format(num_nodes, len(src)))
return g, rel.astype('int64'), norm.astype('int64')
示例4: prepare
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def prepare(self, batch_size):
# Track how many actions have been taken for each graph.
self.step_count = [0] * batch_size
self.g_list = []
# indices for graphs being generated
self.g_active = list(range(batch_size))
for i in range(batch_size):
g = dgl.DGLGraph()
g.index = i
# If there are some features for nodes and edges,
# zero tensors will be set for those of new nodes and edges.
g.set_n_initializer(dgl.frame.zero_initializer)
g.set_e_initializer(dgl.frame.zero_initializer)
self.g_list.append(g)
if self.training:
self.add_node_agent.prepare_training()
self.add_edge_agent.prepare_training()
self.choose_dest_agent.prepare_training()
示例5: build_graph_from_triplets
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def build_graph_from_triplets(num_nodes, num_rels, triplets):
""" Create a DGL graph. The graph is bidirectional because RGCN authors
use reversed relations.
This function also generates edge type and normalization factor
(reciprocal of node incoming degree)
"""
g = dgl.DGLGraph()
g.add_nodes(num_nodes)
src, rel, dst = triplets
src, dst = np.concatenate((src, dst)), np.concatenate((dst, src))
rel = np.concatenate((rel, rel + num_rels))
edges = sorted(zip(dst, src, rel))
dst, src, rel = np.array(edges).transpose()
g.add_edges(src, dst)
norm = comp_deg_norm(g)
print("# nodes: {}, # edges: {}".format(num_nodes, len(src)))
return g, rel, norm
示例6: pagerank_builtin
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def pagerank_builtin(g):
g.ndata['pv'] = g.ndata['pv'] / g.ndata['deg']
g.update_all(message_func=fn.copy_src(src='pv', out='m'),
reduce_func=fn.sum(msg='m',out='m_sum'))
g.ndata['pv'] = (1 - DAMP) / N + DAMP * g.ndata['m_sum']
###############################################################################
# In the previous example code, you directly provide the UDFs to the :func:`update_all <DGLGraph.update_all>`
# as its arguments.
# This will override the previously registered UDFs.
#
# In addition to cleaner code, using ``builtin`` functions also gives DGL the
# opportunity to fuse operations together. This results in faster execution. For
# example, DGL will fuse the ``copy_src`` message function and ``sum`` reduce
# function into one sparse matrix-vector (spMV) multiplication.
#
# `The following section <spmv_>`_ describes why spMV can speed up the scatter-gather
# phase in PageRank. For more details about the ``builtin`` functions in DGL,
# see :doc:`API reference <../../api/python/function>`.
#
# You can also download and run the different code examples to see the differences.
示例7: T
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def T(g):
def message_func(edges):
return {'m': edges.src['y']}
def reduce_func(nodes):
# First compute the maximum of all neighbors...
m = mx.nd.max(nodes.mailbox['m'], axis=1)
# Then compare the maximum with the node itself.
# One can also add a self-loop to each node to avoid this
# additional max computation.
m = mx.nd.maximum(m, nodes.data['y'])
return {'y': m.reshape(m.shape[0], 1)}
g.update_all(message_func, reduce_func)
return g.ndata['y']
##############################################################################
# To run the algorithm, create a ``DGLGraph`` as in the example code here, consisting of two
# disjointed chains, each with ten nodes, and initialize it as specified in
# Eq. :math:`(0)` and Eq. :math:`(1)`.
#
示例8: clear
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def clear(self):
"""Remove all nodes and edges, as well as their features, from the
graph.
Examples
--------
>>> G = dgl.DGLGraph()
>>> G.add_nodes(4)
>>> G.add_edges([0, 1, 2, 3], [1, 2, 3, 0])
>>> G.number_of_nodes()
4
>>> G.number_of_edges()
4
>>> G.clear()
>>> G.number_of_nodes()
0
>>> G.number_of_edges()
0
"""
self._graph.clear()
self._node_frame.clear()
self._edge_frame.clear()
self._msg_index = None
self._msg_frame.clear()
示例9: node_attr_schemes
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def node_attr_schemes(self):
"""Return the node feature schemes.
Each feature scheme is a named tuple that stores the shape and data type
of the node feature
Returns
-------
dict of str to schemes
The schemes of node feature columns.
Examples
--------
>>> G = dgl.DGLGraph()
>>> G.add_nodes(3)
>>> G.ndata['x'] = torch.zeros((3,5))
>>> G.node_attr_schemes()
{'x': Scheme(shape=(5,), dtype=torch.float32)}
"""
return self._node_frame.schemes
示例10: tree1
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def tree1():
"""Generate a tree
0
/ \
1 2
/ \
3 4
Edges are from leaves to root.
"""
g = dgl.DGLGraph()
g.add_nodes(5)
g.add_edge(3, 1)
g.add_edge(4, 1)
g.add_edge(1, 0)
g.add_edge(2, 0)
g.ndata['h'] = F.tensor([0, 1, 2, 3, 4])
g.edata['h'] = F.randn((4, 10))
return g
示例11: test_line_graph
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def test_line_graph():
N = 5
G = dgl.DGLGraph(nx.star_graph(N))
G.edata['h'] = F.randn((2 * N, D))
n_edges = G.number_of_edges()
L = G.line_graph(shared=True)
assert L.number_of_nodes() == 2 * N
L.ndata['h'] = F.randn((2 * N, D))
# update node features on line graph should reflect to edge features on
# original graph.
u = [0, 0, 2, 3]
v = [1, 2, 0, 0]
eid = G.edge_ids(u, v)
L.nodes[eid].data['h'] = F.zeros((4, D))
assert F.allclose(G.edges[u, v].data['h'], F.zeros((4, D)))
# adding a new node feature on line graph should also reflect to a new
# edge feature on original graph
data = F.randn((n_edges, D))
L.ndata['w'] = data
assert F.allclose(G.edata['w'], data)
示例12: test_reverse
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def test_reverse():
g = dgl.DGLGraph()
g.add_nodes(5)
# The graph need not to be completely connected.
g.add_edges([0, 1, 2], [1, 2, 1])
g.ndata['h'] = F.tensor([[0.], [1.], [2.], [3.], [4.]])
g.edata['h'] = F.tensor([[5.], [6.], [7.]])
rg = g.reverse()
assert g.is_multigraph == rg.is_multigraph
assert g.number_of_nodes() == rg.number_of_nodes()
assert g.number_of_edges() == rg.number_of_edges()
assert F.allclose(F.astype(rg.has_edges_between(
[1, 2, 1], [0, 1, 2]), F.float32), F.ones((3,)))
assert g.edge_id(0, 1) == rg.edge_id(1, 0)
assert g.edge_id(1, 2) == rg.edge_id(2, 1)
assert g.edge_id(2, 1) == rg.edge_id(1, 2)
示例13: test_reverse_shared_frames
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def test_reverse_shared_frames():
g = dgl.DGLGraph()
g.add_nodes(3)
g.add_edges([0, 1, 2], [1, 2, 1])
g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
g.edata['h'] = F.tensor([[3.], [4.], [5.]])
rg = g.reverse(share_ndata=True, share_edata=True)
assert F.allclose(g.ndata['h'], rg.ndata['h'])
assert F.allclose(g.edata['h'], rg.edata['h'])
assert F.allclose(g.edges[[0, 2], [1, 1]].data['h'],
rg.edges[[1, 1], [0, 2]].data['h'])
rg.ndata['h'] = rg.ndata['h'] + 1
assert F.allclose(rg.ndata['h'], g.ndata['h'])
g.edata['h'] = g.edata['h'] - 1
assert F.allclose(rg.edata['h'], g.edata['h'])
src_msg = fn.copy_src(src='h', out='m')
sum_reduce = fn.sum(msg='m', out='h')
rg.update_all(src_msg, sum_reduce)
assert F.allclose(g.ndata['h'], rg.ndata['h'])
示例14: test_bidirected_graph
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def test_bidirected_graph():
def _test(in_readonly, out_readonly):
elist = [(0, 0), (0, 1), (1, 0),
(1, 1), (2, 1), (2, 2)]
num_edges = 7
g = dgl.DGLGraph(elist, readonly=in_readonly)
elist.append((1, 2))
elist = set(elist)
big = dgl.to_bidirected(g, out_readonly)
assert big.number_of_edges() == num_edges
src, dst = big.edges()
eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
assert eset == set(elist)
_test(True, True)
_test(True, False)
_test(False, True)
_test(False, False)
示例15: test_khop_graph
# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def test_khop_graph():
N = 20
feat = F.randn((N, 5))
def _test(g):
for k in range(4):
g_k = dgl.khop_graph(g, k)
# use original graph to do message passing for k times.
g.ndata['h'] = feat
for _ in range(k):
g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
h_0 = g.ndata.pop('h')
# use k-hop graph to do message passing for one time.
g_k.ndata['h'] = feat
g_k.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
h_1 = g_k.ndata.pop('h')
assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)
# Test for random undirected graphs
g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
_test(g)
# Test for random directed graphs
g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
_test(g)