當前位置: 首頁>>代碼示例>>Python>>正文


Python dgl.DGLGraph方法代碼示例

本文整理匯總了Python中dgl.DGLGraph方法的典型用法代碼示例。如果您正苦於以下問題:Python dgl.DGLGraph方法的具體用法?Python dgl.DGLGraph怎麽用?Python dgl.DGLGraph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在dgl的用法示例。


在下文中一共展示了dgl.DGLGraph方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def forward(self, pos, centroids, feat=None):
        dev = pos.device
        group_idx = self.frnn(pos, centroids)
        B, N, _ = pos.shape
        glist = []
        for i in range(B):
            center = torch.zeros((N)).to(dev)
            center[centroids[i]] = 1
            src = group_idx[i].contiguous().view(-1)
            dst = centroids[i].view(-1, 1).repeat(1, self.n_neighbor).view(-1)

            unified = torch.cat([src, dst])
            uniq, inv_idx = torch.unique(unified, return_inverse=True)
            src_idx = inv_idx[:src.shape[0]]
            dst_idx = inv_idx[src.shape[0]:]

            g = dgl.DGLGraph((src_idx.cpu(), dst_idx.cpu()), readonly=True)
            g.ndata['pos'] = pos[i][uniq]
            g.ndata['center'] = center[uniq]
            if feat is not None:
                g.ndata['feat'] = feat[i][uniq]
            glist.append(g)
        bg = dgl.batch(glist)
        return bg 
開發者ID:dmlc,項目名稱:dgl,代碼行數:26,代碼來源:pointnet2.py

示例2: build_graph

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def build_graph(self):
        graph = dgl.DGLGraph()
        ent_len = len(self.raw_ent_text)
        rel_len = len(self.raw_rel) # treat the repeated relation as different nodes, refer to the author's code

        graph.add_nodes(ent_len, {'type': torch.ones(ent_len) * NODE_TYPE['entity']})
        graph.add_nodes(1, {'type': torch.ones(1) * NODE_TYPE['root']})
        graph.add_nodes(rel_len*2, {'type': torch.ones(rel_len*2) * NODE_TYPE['relation']})
        graph.add_edges(ent_len, torch.arange(ent_len))
        graph.add_edges(torch.arange(ent_len), ent_len)
        graph.add_edges(torch.arange(ent_len+1+rel_len*2), torch.arange(ent_len+1+rel_len*2))
        adj_edges = []
        for i, r in enumerate(self.raw_rel):
            assert len(r)==3, str(r)
            st, rt, ed = r
            st_ent, ed_ent = self.raw_ent_text.index(st), self.raw_ent_text.index(ed)
            # according to the edge_softmax operator, we need to reverse the graph
            adj_edges.append([ent_len+1+2*i, st_ent])
            adj_edges.append([ed_ent, ent_len+1+2*i])
            adj_edges.append([ent_len+1+2*i+1, ed_ent])
            adj_edges.append([st_ent, ent_len+1+2*i+1])

        if len(adj_edges)>0:
            graph.add_edges(*list(map(list, zip(*adj_edges))))
        return graph 
開發者ID:dmlc,項目名稱:dgl,代碼行數:27,代碼來源:utlis.py

示例3: build_graph_from_triplets

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def build_graph_from_triplets(num_nodes, num_rels, triplets):
    """ Create a DGL graph. The graph is bidirectional because RGCN authors
        use reversed relations.
        This function also generates edge type and normalization factor
        (reciprocal of node incoming degree)
    """
    g = dgl.DGLGraph()
    g.add_nodes(num_nodes)
    src, rel, dst = triplets
    src, dst = np.concatenate((src, dst)), np.concatenate((dst, src))
    rel = np.concatenate((rel, rel + num_rels))
    edges = sorted(zip(dst, src, rel))
    dst, src, rel = np.array(edges).transpose()
    g.add_edges(src, dst)
    norm = comp_deg_norm(g)
    print("# nodes: {}, # edges: {}".format(num_nodes, len(src)))
    return g, rel.astype('int64'), norm.astype('int64') 
開發者ID:dmlc,項目名稱:dgl,代碼行數:19,代碼來源:utils.py

示例4: prepare

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def prepare(self, batch_size):
        # Track how many actions have been taken for each graph.
        self.step_count = [0] * batch_size
        self.g_list = []
        # indices for graphs being generated
        self.g_active = list(range(batch_size))

        for i in range(batch_size):
            g = dgl.DGLGraph()
            g.index = i

            # If there are some features for nodes and edges,
            # zero tensors will be set for those of new nodes and edges.
            g.set_n_initializer(dgl.frame.zero_initializer)
            g.set_e_initializer(dgl.frame.zero_initializer)

            self.g_list.append(g)

        if self.training:
            self.add_node_agent.prepare_training()
            self.add_edge_agent.prepare_training()
            self.choose_dest_agent.prepare_training() 
開發者ID:dmlc,項目名稱:dgl,代碼行數:24,代碼來源:model_batch.py

示例5: build_graph_from_triplets

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def build_graph_from_triplets(num_nodes, num_rels, triplets):
    """ Create a DGL graph. The graph is bidirectional because RGCN authors
        use reversed relations.
        This function also generates edge type and normalization factor
        (reciprocal of node incoming degree)
    """
    g = dgl.DGLGraph()
    g.add_nodes(num_nodes)
    src, rel, dst = triplets
    src, dst = np.concatenate((src, dst)), np.concatenate((dst, src))
    rel = np.concatenate((rel, rel + num_rels))
    edges = sorted(zip(dst, src, rel))
    dst, src, rel = np.array(edges).transpose()
    g.add_edges(src, dst)
    norm = comp_deg_norm(g)
    print("# nodes: {}, # edges: {}".format(num_nodes, len(src)))
    return g, rel, norm 
開發者ID:dmlc,項目名稱:dgl,代碼行數:19,代碼來源:utils.py

示例6: pagerank_builtin

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def pagerank_builtin(g):
    g.ndata['pv'] = g.ndata['pv'] / g.ndata['deg']
    g.update_all(message_func=fn.copy_src(src='pv', out='m'),
                 reduce_func=fn.sum(msg='m',out='m_sum'))
    g.ndata['pv'] = (1 - DAMP) / N + DAMP * g.ndata['m_sum']


###############################################################################
# In the previous example code, you directly provide the UDFs to the :func:`update_all <DGLGraph.update_all>`
# as its arguments.
# This will override the previously registered UDFs.
#
# In addition to cleaner code, using ``builtin`` functions also gives DGL the
# opportunity to fuse operations together. This results in faster execution.  For
# example, DGL will fuse the ``copy_src`` message function and ``sum`` reduce
# function into one sparse matrix-vector (spMV) multiplication.
#
# `The following section <spmv_>`_ describes why spMV can speed up the scatter-gather
# phase in PageRank.  For more details about the ``builtin`` functions in DGL,
# see :doc:`API reference <../../api/python/function>`.
#
# You can also download and run the different code examples to see the differences. 
開發者ID:dmlc,項目名稱:dgl,代碼行數:24,代碼來源:3_pagerank.py

示例7: T

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def T(g):
    def message_func(edges):
        return {'m': edges.src['y']}
    def reduce_func(nodes):
        # First compute the maximum of all neighbors...
        m = mx.nd.max(nodes.mailbox['m'], axis=1)
        # Then compare the maximum with the node itself.
        # One can also add a self-loop to each node to avoid this
        # additional max computation.
        m = mx.nd.maximum(m, nodes.data['y'])
        return {'y': m.reshape(m.shape[0], 1)}
    g.update_all(message_func, reduce_func)
    return g.ndata['y']

##############################################################################
# To run the algorithm, create a ``DGLGraph`` as in the example code here, consisting of two
# disjointed chains, each with ten nodes, and initialize it as specified in
# Eq. :math:`(0)` and Eq. :math:`(1)`.
# 
開發者ID:dmlc,項目名稱:dgl,代碼行數:21,代碼來源:8_sse_mx.py

示例8: clear

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def clear(self):
        """Remove all nodes and edges, as well as their features, from the
        graph.

        Examples
        --------
        >>> G = dgl.DGLGraph()
        >>> G.add_nodes(4)
        >>> G.add_edges([0, 1, 2, 3], [1, 2, 3, 0])
        >>> G.number_of_nodes()
        4
        >>> G.number_of_edges()
        4
        >>> G.clear()
        >>> G.number_of_nodes()
        0
        >>> G.number_of_edges()
        0
        """
        self._graph.clear()
        self._node_frame.clear()
        self._edge_frame.clear()
        self._msg_index = None
        self._msg_frame.clear() 
開發者ID:dmlc,項目名稱:dgl,代碼行數:26,代碼來源:graph.py

示例9: node_attr_schemes

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def node_attr_schemes(self):
        """Return the node feature schemes.

        Each feature scheme is a named tuple that stores the shape and data type
        of the node feature

        Returns
        -------
        dict of str to schemes
            The schemes of node feature columns.

        Examples
        --------
        >>> G = dgl.DGLGraph()
        >>> G.add_nodes(3)
        >>> G.ndata['x'] = torch.zeros((3,5))
        >>> G.node_attr_schemes()
        {'x': Scheme(shape=(5,), dtype=torch.float32)}
        """
        return self._node_frame.schemes 
開發者ID:dmlc,項目名稱:dgl,代碼行數:22,代碼來源:graph.py

示例10: tree1

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def tree1():
    """Generate a tree
         0
        / \
       1   2
      / \
     3   4
    Edges are from leaves to root.
    """
    g = dgl.DGLGraph()
    g.add_nodes(5)
    g.add_edge(3, 1)
    g.add_edge(4, 1)
    g.add_edge(1, 0)
    g.add_edge(2, 0)
    g.ndata['h'] = F.tensor([0, 1, 2, 3, 4])
    g.edata['h'] = F.randn((4, 10))
    return g 
開發者ID:dmlc,項目名稱:dgl,代碼行數:20,代碼來源:test_batched_graph.py

示例11: test_line_graph

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def test_line_graph():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
    G.edata['h'] = F.randn((2 * N, D))
    n_edges = G.number_of_edges()
    L = G.line_graph(shared=True)
    assert L.number_of_nodes() == 2 * N
    L.ndata['h'] = F.randn((2 * N, D))
    # update node features on line graph should reflect to edge features on
    # original graph.
    u = [0, 0, 2, 3]
    v = [1, 2, 0, 0]
    eid = G.edge_ids(u, v)
    L.nodes[eid].data['h'] = F.zeros((4, D))
    assert F.allclose(G.edges[u, v].data['h'], F.zeros((4, D)))

    # adding a new node feature on line graph should also reflect to a new
    # edge feature on original graph
    data = F.randn((n_edges, D))
    L.ndata['w'] = data
    assert F.allclose(G.edata['w'], data) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:23,代碼來源:test_transform.py

示例12: test_reverse

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def test_reverse():
    g = dgl.DGLGraph()
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [3.], [4.]])
    g.edata['h'] = F.tensor([[5.], [6.], [7.]])
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
    assert F.allclose(F.astype(rg.has_edges_between(
        [1, 2, 1], [0, 1, 2]), F.float32), F.ones((3,)))
    assert g.edge_id(0, 1) == rg.edge_id(1, 0)
    assert g.edge_id(1, 2) == rg.edge_id(2, 1)
    assert g.edge_id(2, 1) == rg.edge_id(1, 2) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:20,代碼來源:test_transform.py

示例13: test_reverse_shared_frames

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def test_reverse_shared_frames():
    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2], [1, 2, 1])
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])

    rg = g.reverse(share_ndata=True, share_edata=True)
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
    assert F.allclose(g.edata['h'], rg.edata['h'])
    assert F.allclose(g.edges[[0, 2], [1, 1]].data['h'],
                      rg.edges[[1, 1], [0, 2]].data['h'])

    rg.ndata['h'] = rg.ndata['h'] + 1
    assert F.allclose(rg.ndata['h'], g.ndata['h'])

    g.edata['h'] = g.edata['h'] - 1
    assert F.allclose(rg.edata['h'], g.edata['h'])

    src_msg = fn.copy_src(src='h', out='m')
    sum_reduce = fn.sum(msg='m', out='h')

    rg.update_all(src_msg, sum_reduce)
    assert F.allclose(g.ndata['h'], rg.ndata['h']) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:26,代碼來源:test_transform.py

示例14: test_bidirected_graph

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def test_bidirected_graph():
    def _test(in_readonly, out_readonly):
        elist = [(0, 0), (0, 1), (1, 0),
                (1, 1), (2, 1), (2, 2)]
        num_edges = 7
        g = dgl.DGLGraph(elist, readonly=in_readonly)
        elist.append((1, 2))
        elist = set(elist)
        big = dgl.to_bidirected(g, out_readonly)
        assert big.number_of_edges() == num_edges
        src, dst = big.edges()
        eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
        assert eset == set(elist)

    _test(True, True)
    _test(True, False)
    _test(False, True)
    _test(False, False) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:20,代碼來源:test_transform.py

示例15: test_khop_graph

# 需要導入模塊: import dgl [as 別名]
# 或者: from dgl import DGLGraph [as 別名]
def test_khop_graph():
    N = 20
    feat = F.randn((N, 5))

    def _test(g):
        for k in range(4):
            g_k = dgl.khop_graph(g, k)
            # use original graph to do message passing for k times.
            g.ndata['h'] = feat
            for _ in range(k):
                g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_0 = g.ndata.pop('h')
            # use k-hop graph to do message passing for one time.
            g_k.ndata['h'] = feat
            g_k.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_1 = g_k.ndata.pop('h')
            assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

    # Test for random undirected graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    _test(g)
    # Test for random directed graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
    _test(g) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:26,代碼來源:test_transform.py


注:本文中的dgl.DGLGraph方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。