當前位置: 首頁>>代碼示例>>Python>>正文


Python boxes.bbox_transform_inv方法代碼示例

本文整理匯總了Python中detectron.utils.boxes.bbox_transform_inv方法的典型用法代碼示例。如果您正苦於以下問題:Python boxes.bbox_transform_inv方法的具體用法?Python boxes.bbox_transform_inv怎麽用?Python boxes.bbox_transform_inv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在detectron.utils.boxes的用法示例。


在下文中一共展示了boxes.bbox_transform_inv方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_targets

# 需要導入模塊: from detectron.utils import boxes [as 別名]
# 或者: from detectron.utils.boxes import bbox_transform_inv [as 別名]
def compute_targets(ex_rois, gt_rois, weights=(1.0, 1.0, 1.0, 1.0)):
    """Compute bounding-box regression targets for an image."""
    return box_utils.bbox_transform_inv(ex_rois, gt_rois, weights).astype(
        np.float32, copy=False
    ) 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:7,代碼來源:data_utils.py

示例2: test_bbox_transform_and_inverse

# 需要導入模塊: from detectron.utils import boxes [as 別名]
# 或者: from detectron.utils.boxes import bbox_transform_inv [as 別名]
def test_bbox_transform_and_inverse(self):
        weights = (5, 5, 10, 10)
        src_boxes = random_boxes([10, 10, 20, 20], 1, 10)
        dst_boxes = random_boxes([10, 10, 20, 20], 1, 10)
        deltas = box_utils.bbox_transform_inv(
            src_boxes, dst_boxes, weights=weights
        )
        dst_boxes_reconstructed = box_utils.bbox_transform(
            src_boxes, deltas, weights=weights
        )
        np.testing.assert_array_almost_equal(
            dst_boxes, dst_boxes_reconstructed, decimal=5
        ) 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:15,代碼來源:test_bbox_transform.py

示例3: test_bbox_dataset_to_prediction_roundtrip

# 需要導入模塊: from detectron.utils import boxes [as 別名]
# 或者: from detectron.utils.boxes import bbox_transform_inv [as 別名]
def test_bbox_dataset_to_prediction_roundtrip(self):
        """Simulate the process of reading a ground-truth box from a dataset,
        make predictions from proposals, convert the predictions back to the
        dataset format, and then use the COCO API to compute IoU overlap between
        the gt box and the predictions. These should have IoU of 1.
        """
        weights = (5, 5, 10, 10)
        # 1/ "read" a box from a dataset in the default (x1, y1, w, h) format
        gt_xywh_box = [10, 20, 100, 150]
        # 2/ convert it to our internal (x1, y1, x2, y2) format
        gt_xyxy_box = box_utils.xywh_to_xyxy(gt_xywh_box)
        # 3/ consider nearby proposal boxes
        prop_xyxy_boxes = random_boxes(gt_xyxy_box, 10, 10)
        # 4/ compute proposal-to-gt transformation deltas
        deltas = box_utils.bbox_transform_inv(
            prop_xyxy_boxes, np.array([gt_xyxy_box]), weights=weights
        )
        # 5/ use deltas to transform proposals to xyxy predicted box
        pred_xyxy_boxes = box_utils.bbox_transform(
            prop_xyxy_boxes, deltas, weights=weights
        )
        # 6/ convert xyxy predicted box to xywh predicted box
        pred_xywh_boxes = box_utils.xyxy_to_xywh(pred_xyxy_boxes)
        # 7/ use COCO API to compute IoU
        not_crowd = [int(False)] * pred_xywh_boxes.shape[0]
        ious = COCOmask.iou(pred_xywh_boxes, np.array([gt_xywh_box]), not_crowd)
        np.testing.assert_array_almost_equal(ious, np.ones(ious.shape)) 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:29,代碼來源:test_bbox_transform.py

示例4: compute_bbox_regression_targets

# 需要導入模塊: from detectron.utils import boxes [as 別名]
# 或者: from detectron.utils.boxes import bbox_transform_inv [as 別名]
def compute_bbox_regression_targets(entry):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    rois = entry['boxes']
    overlaps = entry['max_overlaps']
    labels = entry['max_classes']
    gt_inds = np.where((entry['gt_classes'] > 0) & (entry['is_crowd'] == 0))[0]
    # Targets has format (class, tx, ty, tw, th)
    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return targets

    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = box_utils.bbox_overlaps(
        rois[ex_inds, :].astype(dtype=np.float32, copy=False),
        rois[gt_inds, :].astype(dtype=np.float32, copy=False))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]
    # Use class "1" for all boxes if using class_agnostic_bbox_reg
    targets[ex_inds, 0] = (
        1 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else labels[ex_inds])
    targets[ex_inds, 1:] = box_utils.bbox_transform_inv(
        ex_rois, gt_rois, cfg.MODEL.BBOX_REG_WEIGHTS)
    return targets 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:34,代碼來源:roidb.py

示例5: _compute_targets

# 需要導入模塊: from detectron.utils import boxes [as 別名]
# 或者: from detectron.utils.boxes import bbox_transform_inv [as 別名]
def _compute_targets(ex_rois, gt_rois, labels, stage):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4

    bbox_reg_weights = cfg.CASCADE_RCNN.BBOX_REG_WEIGHTS[stage - 1]
    targets = box_utils.bbox_transform_inv(ex_rois, gt_rois, bbox_reg_weights)
    return np.hstack((labels[:, np.newaxis], targets)).astype(np.float32, copy=False) 
開發者ID:fyangneil,項目名稱:Clustered-Object-Detection-in-Aerial-Image,代碼行數:12,代碼來源:cascade_rcnn.py


注:本文中的detectron.utils.boxes.bbox_transform_inv方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。