本文整理匯總了Python中detectron.utils.boxes.bbox_transform方法的典型用法代碼示例。如果您正苦於以下問題:Python boxes.bbox_transform方法的具體用法?Python boxes.bbox_transform怎麽用?Python boxes.bbox_transform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類detectron.utils.boxes
的用法示例。
在下文中一共展示了boxes.bbox_transform方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_bbox_transform_and_inverse
# 需要導入模塊: from detectron.utils import boxes [as 別名]
# 或者: from detectron.utils.boxes import bbox_transform [as 別名]
def test_bbox_transform_and_inverse(self):
weights = (5, 5, 10, 10)
src_boxes = random_boxes([10, 10, 20, 20], 1, 10)
dst_boxes = random_boxes([10, 10, 20, 20], 1, 10)
deltas = box_utils.bbox_transform_inv(
src_boxes, dst_boxes, weights=weights
)
dst_boxes_reconstructed = box_utils.bbox_transform(
src_boxes, deltas, weights=weights
)
np.testing.assert_array_almost_equal(
dst_boxes, dst_boxes_reconstructed, decimal=5
)
示例2: test_bbox_dataset_to_prediction_roundtrip
# 需要導入模塊: from detectron.utils import boxes [as 別名]
# 或者: from detectron.utils.boxes import bbox_transform [as 別名]
def test_bbox_dataset_to_prediction_roundtrip(self):
"""Simulate the process of reading a ground-truth box from a dataset,
make predictions from proposals, convert the predictions back to the
dataset format, and then use the COCO API to compute IoU overlap between
the gt box and the predictions. These should have IoU of 1.
"""
weights = (5, 5, 10, 10)
# 1/ "read" a box from a dataset in the default (x1, y1, w, h) format
gt_xywh_box = [10, 20, 100, 150]
# 2/ convert it to our internal (x1, y1, x2, y2) format
gt_xyxy_box = box_utils.xywh_to_xyxy(gt_xywh_box)
# 3/ consider nearby proposal boxes
prop_xyxy_boxes = random_boxes(gt_xyxy_box, 10, 10)
# 4/ compute proposal-to-gt transformation deltas
deltas = box_utils.bbox_transform_inv(
prop_xyxy_boxes, np.array([gt_xyxy_box]), weights=weights
)
# 5/ use deltas to transform proposals to xyxy predicted box
pred_xyxy_boxes = box_utils.bbox_transform(
prop_xyxy_boxes, deltas, weights=weights
)
# 6/ convert xyxy predicted box to xywh predicted box
pred_xywh_boxes = box_utils.xyxy_to_xywh(pred_xyxy_boxes)
# 7/ use COCO API to compute IoU
not_crowd = [int(False)] * pred_xywh_boxes.shape[0]
ious = COCOmask.iou(pred_xywh_boxes, np.array([gt_xywh_box]), not_crowd)
np.testing.assert_array_almost_equal(ious, np.ones(ious.shape))
示例3: forward
# 需要導入模塊: from detectron.utils import boxes [as 別名]
# 或者: from detectron.utils.boxes import bbox_transform [as 別名]
def forward(self, inputs, outputs):
"""See modeling.detector.DecodeBBoxes for inputs/outputs
documentation.
"""
bbox_deltas = inputs[0].data
assert cfg.MODEL.CLS_AGNOSTIC_BBOX_REG
assert bbox_deltas.shape[1] == 8
bbox_deltas = bbox_deltas[:, -4:]
bbox_data = inputs[1].data
assert bbox_data.shape[1] == 5
batch_inds = bbox_data[:, :1]
bbox_prior = bbox_data[:, 1:]
# Transform bbox priors into proposals via bbox transformations
bbox_decode = box_utils.bbox_transform(
bbox_prior, bbox_deltas, self._bbox_reg_weights
)
# remove mal-boxes with non-positive width or height and ground
# truth boxes during training
if len(inputs) > 2:
mapped_gt_boxes = inputs[2].data
max_overlap = mapped_gt_boxes[:, 4]
keep = _filter_boxes(bbox_decode, max_overlap)
bbox_decode = bbox_decode[keep, :]
batch_inds = batch_inds[keep, :]
bbox_decode = np.hstack((batch_inds, bbox_decode))
outputs[0].reshape(bbox_decode.shape)
outputs[0].data[...] = bbox_decode
示例4: forward
# 需要導入模塊: from detectron.utils import boxes [as 別名]
# 或者: from detectron.utils.boxes import bbox_transform [as 別名]
def forward(self, inputs, outputs):
"""See modeling.detector.AddBBoxAccuracy for inputs/outputs
documentation.
"""
# predicted bbox deltas
bbox_deltas = inputs[0].data
# proposals
bbox_data = inputs[1].data
assert bbox_data.shape[1] == 5
bbox_prior = bbox_data[:, 1:]
# labels
labels = inputs[2].data
# mapped gt boxes
mapped_gt_boxes = inputs[3].data
gt_boxes = mapped_gt_boxes[:, :4]
max_overlap = mapped_gt_boxes[:, 4]
# bbox iou only for fg and non-gt boxes
keep_inds = np.where((labels > 0) & (max_overlap < 1.0))[0]
num_boxes = keep_inds.size
bbox_deltas = bbox_deltas[keep_inds, :]
bbox_prior = bbox_prior[keep_inds, :]
labels = labels[keep_inds]
gt_boxes = gt_boxes[keep_inds, :]
max_overlap = max_overlap[keep_inds]
if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG or num_boxes == 0:
bbox_deltas = bbox_deltas[:, -4:]
else:
bbox_deltas = np.vstack(
[
bbox_deltas[i, labels[i] * 4: labels[i] * 4 + 4]
for i in range(num_boxes)
]
)
pred_boxes = box_utils.bbox_transform(
bbox_prior, bbox_deltas, self._bbox_reg_weights
)
avg_iou = 0.
pre_avg_iou = sum(max_overlap)
for i in range(num_boxes):
gt_box = gt_boxes[i, :]
pred_box = pred_boxes[i, :]
tmp_iou = box_utils.bbox_overlaps(
gt_box[np.newaxis, :].astype(dtype=np.float32, copy=False),
pred_box[np.newaxis, :].astype(dtype=np.float32, copy=False),
)
avg_iou += tmp_iou[0]
if num_boxes > 0:
avg_iou /= num_boxes
pre_avg_iou /= num_boxes
outputs[0].reshape([1])
outputs[0].data[...] = avg_iou
outputs[1].reshape([1])
outputs[1].data[...] = pre_avg_iou