本文整理匯總了Python中detectron.utils.boxes.bbox_overlaps方法的典型用法代碼示例。如果您正苦於以下問題:Python boxes.bbox_overlaps方法的具體用法?Python boxes.bbox_overlaps怎麽用?Python boxes.bbox_overlaps使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類detectron.utils.boxes
的用法示例。
在下文中一共展示了boxes.bbox_overlaps方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_cython_bbox_iou_against_coco_api_bbox_iou
# 需要導入模塊: from detectron.utils import boxes [as 別名]
# 或者: from detectron.utils.boxes import bbox_overlaps [as 別名]
def test_cython_bbox_iou_against_coco_api_bbox_iou(self):
"""Check that our cython implementation of bounding box IoU overlap
matches the COCO API implementation.
"""
def _do_test(b1, b2):
# Compute IoU overlap with the cython implementation
cython_iou = box_utils.bbox_overlaps(b1, b2)
# Compute IoU overlap with the COCO API implementation
# (requires converting boxes from xyxy to xywh format)
xywh_b1 = box_utils.xyxy_to_xywh(b1)
xywh_b2 = box_utils.xyxy_to_xywh(b2)
not_crowd = [int(False)] * b2.shape[0]
coco_ious = COCOmask.iou(xywh_b1, xywh_b2, not_crowd)
# IoUs should be similar
np.testing.assert_array_almost_equal(
cython_iou, coco_ious, decimal=5
)
# Test small boxes
b1 = random_boxes([10, 10, 20, 20], 5, 10)
b2 = random_boxes([10, 10, 20, 20], 5, 10)
_do_test(b1, b2)
# Test bigger boxes
b1 = random_boxes([10, 10, 110, 20], 20, 10)
b2 = random_boxes([10, 10, 110, 20], 20, 10)
_do_test(b1, b2)
示例2: compute_bbox_regression_targets
# 需要導入模塊: from detectron.utils import boxes [as 別名]
# 或者: from detectron.utils.boxes import bbox_overlaps [as 別名]
def compute_bbox_regression_targets(entry):
"""Compute bounding-box regression targets for an image."""
# Indices of ground-truth ROIs
rois = entry['boxes']
overlaps = entry['max_overlaps']
labels = entry['max_classes']
gt_inds = np.where((entry['gt_classes'] > 0) & (entry['is_crowd'] == 0))[0]
# Targets has format (class, tx, ty, tw, th)
targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
if len(gt_inds) == 0:
# Bail if the image has no ground-truth ROIs
return targets
# Indices of examples for which we try to make predictions
ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]
# Get IoU overlap between each ex ROI and gt ROI
ex_gt_overlaps = box_utils.bbox_overlaps(
rois[ex_inds, :].astype(dtype=np.float32, copy=False),
rois[gt_inds, :].astype(dtype=np.float32, copy=False))
# Find which gt ROI each ex ROI has max overlap with:
# this will be the ex ROI's gt target
gt_assignment = ex_gt_overlaps.argmax(axis=1)
gt_rois = rois[gt_inds[gt_assignment], :]
ex_rois = rois[ex_inds, :]
# Use class "1" for all boxes if using class_agnostic_bbox_reg
targets[ex_inds, 0] = (
1 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else labels[ex_inds])
targets[ex_inds, 1:] = box_utils.bbox_transform_inv(
ex_rois, gt_rois, cfg.MODEL.BBOX_REG_WEIGHTS)
return targets
示例3: forward
# 需要導入模塊: from detectron.utils import boxes [as 別名]
# 或者: from detectron.utils.boxes import bbox_overlaps [as 別名]
def forward(self, inputs, outputs):
"""See modeling.detector.AddBBoxAccuracy for inputs/outputs
documentation.
"""
# predicted bbox deltas
bbox_deltas = inputs[0].data
# proposals
bbox_data = inputs[1].data
assert bbox_data.shape[1] == 5
bbox_prior = bbox_data[:, 1:]
# labels
labels = inputs[2].data
# mapped gt boxes
mapped_gt_boxes = inputs[3].data
gt_boxes = mapped_gt_boxes[:, :4]
max_overlap = mapped_gt_boxes[:, 4]
# bbox iou only for fg and non-gt boxes
keep_inds = np.where((labels > 0) & (max_overlap < 1.0))[0]
num_boxes = keep_inds.size
bbox_deltas = bbox_deltas[keep_inds, :]
bbox_prior = bbox_prior[keep_inds, :]
labels = labels[keep_inds]
gt_boxes = gt_boxes[keep_inds, :]
max_overlap = max_overlap[keep_inds]
if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG or num_boxes == 0:
bbox_deltas = bbox_deltas[:, -4:]
else:
bbox_deltas = np.vstack(
[
bbox_deltas[i, labels[i] * 4: labels[i] * 4 + 4]
for i in range(num_boxes)
]
)
pred_boxes = box_utils.bbox_transform(
bbox_prior, bbox_deltas, self._bbox_reg_weights
)
avg_iou = 0.
pre_avg_iou = sum(max_overlap)
for i in range(num_boxes):
gt_box = gt_boxes[i, :]
pred_box = pred_boxes[i, :]
tmp_iou = box_utils.bbox_overlaps(
gt_box[np.newaxis, :].astype(dtype=np.float32, copy=False),
pred_box[np.newaxis, :].astype(dtype=np.float32, copy=False),
)
avg_iou += tmp_iou[0]
if num_boxes > 0:
avg_iou /= num_boxes
pre_avg_iou /= num_boxes
outputs[0].reshape([1])
outputs[0].data[...] = avg_iou
outputs[1].reshape([1])
outputs[1].data[...] = pre_avg_iou