當前位置: 首頁>>代碼示例>>Python>>正文


Python model.multi_scale_logits方法代碼示例

本文整理匯總了Python中deeplab.model.multi_scale_logits方法的典型用法代碼示例。如果您正苦於以下問題:Python model.multi_scale_logits方法的具體用法?Python model.multi_scale_logits怎麽用?Python model.multi_scale_logits使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在deeplab.model的用法示例。


在下文中一共展示了model.multi_scale_logits方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _build_network

# 需要導入模塊: from deeplab import model [as 別名]
# 或者: from deeplab.model import multi_scale_logits [as 別名]
def _build_network(features, mode, params):
  """Builds the network for different values of params['use_bfloat16']."""
  if params['use_bfloat16']:
    with bfloat16.bfloat16_scope():
      outputs_to_scales_to_logits = multi_scale_logits(
          features,
          params['model_options'],
          params['image_pyramid'],
          weight_decay=0.0,
          is_training=mode == tf.estimator.ModeKeys.TRAIN,
          fine_tune_batch_norm=(
              params['fine_tune_batch_norm']
              if mode == tf.estimator.ModeKeys.TRAIN else False)
      )
    for level, output in outputs_to_scales_to_logits.iteritems():
      for scale, logits in output.iteritems():
        outputs_to_scales_to_logits[level][scale] = tf.cast(logits, tf.float32)
  else:
    outputs_to_scales_to_logits = multi_scale_logits(
        features,
        params['model_options'],
        params['image_pyramid'],
        weight_decay=params['weight_decay'],
        is_training=mode == tf.estimator.ModeKeys.TRAIN,
        fine_tune_batch_norm=(
            params['fine_tune_batch_norm']
            if mode == tf.estimator.ModeKeys.TRAIN else False)
    )
  return outputs_to_scales_to_logits 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:31,代碼來源:model.py

示例2: testForwardpassDeepLabv3plus

# 需要導入模塊: from deeplab import model [as 別名]
# 或者: from deeplab.model import multi_scale_logits [as 別名]
def testForwardpassDeepLabv3plus(self):
    crop_size = [33, 33]
    outputs_to_num_classes = {'semantic': 3}

    model_options = common.ModelOptions(
        outputs_to_num_classes,
        crop_size,
        output_stride=16
    )._replace(
        add_image_level_feature=True,
        aspp_with_batch_norm=True,
        logits_kernel_size=1,
        model_variant='mobilenet_v2')  # Employ MobileNetv2 for fast test.

    g = tf.Graph()
    with g.as_default():
      with self.test_session(graph=g) as sess:
        inputs = tf.random_uniform(
            (1, crop_size[0], crop_size[1], 3))
        outputs_to_scales_to_logits = model.multi_scale_logits(
            inputs,
            model_options,
            image_pyramid=[1.0])

        sess.run(tf.global_variables_initializer())
        outputs_to_scales_to_logits = sess.run(outputs_to_scales_to_logits)

        # Check computed results for each output type.
        for output in outputs_to_num_classes:
          scales_to_logits = outputs_to_scales_to_logits[output]
          # Expect only one output.
          self.assertEquals(len(scales_to_logits), 1)
          for logits in scales_to_logits.values():
            self.assertTrue(logits.any()) 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:36,代碼來源:model_test.py

示例3: testForwardpassDeepLabv3plus

# 需要導入模塊: from deeplab import model [as 別名]
# 或者: from deeplab.model import multi_scale_logits [as 別名]
def testForwardpassDeepLabv3plus(self):
    crop_size = [33, 33]
    outputs_to_num_classes = {'semantic': 3}

    model_options = common.ModelOptions(
        outputs_to_num_classes,
        crop_size,
        output_stride=16
    )._replace(
        add_image_level_feature=True,
        aspp_with_batch_norm=True,
        logits_kernel_size=1,
        decoder_output_stride=[4],
        model_variant='mobilenet_v2')  # Employ MobileNetv2 for fast test.

    g = tf.Graph()
    with g.as_default():
      with self.test_session(graph=g) as sess:
        inputs = tf.random_uniform(
            (1, crop_size[0], crop_size[1], 3))
        outputs_to_scales_to_logits = model.multi_scale_logits(
            inputs,
            model_options,
            image_pyramid=[1.0])

        sess.run(tf.global_variables_initializer())
        outputs_to_scales_to_logits = sess.run(outputs_to_scales_to_logits)

        # Check computed results for each output type.
        for output in outputs_to_num_classes:
          scales_to_logits = outputs_to_scales_to_logits[output]
          # Expect only one output.
          self.assertEqual(len(scales_to_logits), 1)
          for logits in scales_to_logits.values():
            self.assertTrue(logits.any()) 
開發者ID:IBM,項目名稱:MAX-Image-Segmenter,代碼行數:37,代碼來源:model_test.py

示例4: testBuildDeepLabWithDensePredictionCell

# 需要導入模塊: from deeplab import model [as 別名]
# 或者: from deeplab.model import multi_scale_logits [as 別名]
def testBuildDeepLabWithDensePredictionCell(self):
    batch_size = 1
    crop_size = [33, 33]
    outputs_to_num_classes = {'semantic': 2}
    expected_endpoints = ['merged_logits']
    dense_prediction_cell_config = [
        {'kernel': 3, 'rate': [1, 6], 'op': 'conv', 'input': -1},
        {'kernel': 3, 'rate': [18, 15], 'op': 'conv', 'input': 0},
    ]
    model_options = common.ModelOptions(
        outputs_to_num_classes,
        crop_size,
        output_stride=16)._replace(
            aspp_with_batch_norm=True,
            model_variant='mobilenet_v2',
            dense_prediction_cell_config=dense_prediction_cell_config)
    g = tf.Graph()
    with g.as_default():
      with self.test_session(graph=g):
        inputs = tf.random_uniform(
            (batch_size, crop_size[0], crop_size[1], 3))
        outputs_to_scales_to_model_results = model.multi_scale_logits(
            inputs,
            model_options,
            image_pyramid=[1.0])
        for output in outputs_to_num_classes:
          scales_to_model_results = outputs_to_scales_to_model_results[output]
          self.assertListEqual(
              list(scales_to_model_results), expected_endpoints)
          self.assertEqual(len(scales_to_model_results), 1) 
開發者ID:IBM,項目名稱:MAX-Image-Segmenter,代碼行數:32,代碼來源:model_test.py

示例5: testForwardpassDeepLabv3plus

# 需要導入模塊: from deeplab import model [as 別名]
# 或者: from deeplab.model import multi_scale_logits [as 別名]
def testForwardpassDeepLabv3plus(self):
    crop_size = [33, 33]
    outputs_to_num_classes = {'semantic': 3}

    model_options = common.ModelOptions(
        outputs_to_num_classes,
        crop_size,
        output_stride=16
    )._replace(
        add_image_level_feature=True,
        aspp_with_batch_norm=True,
        logits_kernel_size=1,
        model_variant='mobilenet_v2')  # Employ MobileNetv2 for fast test.

    g = tf.Graph()
    with g.as_default():
      with self.test_session(graph=g) as sess:
        inputs = tf.random_uniform(
            (1, crop_size[0], crop_size[1], 3))
        outputs_to_scales_to_logits = model.multi_scale_logits(
            inputs,
            model_options,
            image_pyramid=[1.0])

        sess.run(tf.global_variables_initializer())
        outputs_to_scales_to_logits = sess.run(outputs_to_scales_to_logits)

        # Check computed results for each output type.
        for output in outputs_to_num_classes:
          scales_to_logits = outputs_to_scales_to_logits[output]
          # Expect only one output.
          self.assertEqual(len(scales_to_logits), 1)
          for logits in scales_to_logits.values():
            self.assertTrue(logits.any()) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:36,代碼來源:model_test.py

示例6: testBuildDeepLabWithDensePredictionCell

# 需要導入模塊: from deeplab import model [as 別名]
# 或者: from deeplab.model import multi_scale_logits [as 別名]
def testBuildDeepLabWithDensePredictionCell(self):
    batch_size = 1
    crop_size = [33, 33]
    outputs_to_num_classes = {'semantic': 2}
    expected_endpoints = ['merged_logits']
    dense_prediction_cell_config = [
      {'kernel': 3, 'rate': [1, 6], 'op': 'conv', 'input': -1},
      {'kernel': 3, 'rate': [18, 15], 'op': 'conv', 'input': 0},
    ]
    model_options = common.ModelOptions(
        outputs_to_num_classes,
        crop_size,
        output_stride=16)._replace(
        aspp_with_batch_norm=True,
        model_variant='mobilenet_v2',
        dense_prediction_cell_config=dense_prediction_cell_config)
    g = tf.Graph()
    with g.as_default():
      with self.test_session(graph=g):
        inputs = tf.random_uniform(
            (batch_size, crop_size[0], crop_size[1], 3))
        outputs_to_scales_to_model_results = model.multi_scale_logits(
            inputs,
            model_options,
            image_pyramid=[1.0])
        for output in outputs_to_num_classes:
          scales_to_model_results = outputs_to_scales_to_model_results[output]
          self.assertListEqual(scales_to_model_results.keys(),
                               expected_endpoints)
          self.assertEqual(len(scales_to_model_results), 1) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:32,代碼來源:model_test.py

示例7: testBuildDeepLabv2

# 需要導入模塊: from deeplab import model [as 別名]
# 或者: from deeplab.model import multi_scale_logits [as 別名]
def testBuildDeepLabv2(self):
    batch_size = 2
    crop_size = [41, 41]

    # Test with two image_pyramids.
    image_pyramids = [[1], [0.5, 1]]

    # Test two model variants.
    model_variants = ['xception_65', 'mobilenet_v2']

    # Test with two output_types.
    outputs_to_num_classes = {'semantic': 3,
                              'direction': 2}

    expected_endpoints = [['merged_logits'],
                          ['merged_logits',
                           'logits_0.50',
                           'logits_1.00']]
    expected_num_logits = [1, 3]

    for model_variant in model_variants:
      model_options = common.ModelOptions(outputs_to_num_classes)._replace(
          add_image_level_feature=False,
          aspp_with_batch_norm=False,
          aspp_with_separable_conv=False,
          model_variant=model_variant)

      for i, image_pyramid in enumerate(image_pyramids):
        g = tf.Graph()
        with g.as_default():
          with self.test_session(graph=g):
            inputs = tf.random_uniform(
                (batch_size, crop_size[0], crop_size[1], 3))
            outputs_to_scales_to_logits = model.multi_scale_logits(
                inputs, model_options, image_pyramid=image_pyramid)

            # Check computed results for each output type.
            for output in outputs_to_num_classes:
              scales_to_logits = outputs_to_scales_to_logits[output]
              self.assertListEqual(sorted(scales_to_logits.keys()),
                                   sorted(expected_endpoints[i]))

              # Expected number of logits = len(image_pyramid) + 1, since the
              # last logits is merged from all the scales.
              self.assertEqual(len(scales_to_logits), expected_num_logits[i]) 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:47,代碼來源:model_test.py

示例8: _build_deeplab

# 需要導入模塊: from deeplab import model [as 別名]
# 或者: from deeplab.model import multi_scale_logits [as 別名]
def _build_deeplab(inputs_queue, outputs_to_num_classes, ignore_label):
  """Builds a clone of DeepLab.

  Args:
    inputs_queue: A prefetch queue for images and labels.
    outputs_to_num_classes: A map from output type to the number of classes.
      For example, for the task of semantic segmentation with 21 semantic
      classes, we would have outputs_to_num_classes['semantic'] = 21.
    ignore_label: Ignore label.

  Returns:
    A map of maps from output_type (e.g., semantic prediction) to a
      dictionary of multi-scale logits names to logits. For each output_type,
      the dictionary has keys which correspond to the scales and values which
      correspond to the logits. For example, if `scales` equals [1.0, 1.5],
      then the keys would include 'merged_logits', 'logits_1.00' and
      'logits_1.50'.
  """
  samples = inputs_queue.dequeue()

  # add name to input and label nodes so we can add to summary
  samples[common.IMAGE] = tf.identity(samples[common.IMAGE], name = common.IMAGE)
  samples[common.LABEL] = tf.identity(samples[common.LABEL], name = common.LABEL)

  model_options = common.ModelOptions(
      outputs_to_num_classes=outputs_to_num_classes,
      crop_size=FLAGS.train_crop_size,
      atrous_rates=FLAGS.atrous_rates,
      output_stride=FLAGS.output_stride)
  outputs_to_scales_to_logits = model.multi_scale_logits(
      samples[common.IMAGE],
      model_options=model_options,
      image_pyramid=FLAGS.image_pyramid,
      weight_decay=FLAGS.weight_decay,
      is_training=True,
      fine_tune_batch_norm=FLAGS.fine_tune_batch_norm)

  # add name to graph node so we can add to summary
  outputs_to_scales_to_logits[common.OUTPUT_TYPE][model._MERGED_LOGITS_SCOPE] = tf.identity( 
    outputs_to_scales_to_logits[common.OUTPUT_TYPE][model._MERGED_LOGITS_SCOPE],
    name = common.OUTPUT_TYPE
  )

  for output, num_classes in six.iteritems(outputs_to_num_classes):
    train_utils.add_softmax_cross_entropy_loss_for_each_scale(
        outputs_to_scales_to_logits[output],
        samples[common.LABEL],
        num_classes,
        ignore_label,
        loss_weight=1.0,
        upsample_logits=FLAGS.upsample_logits,
        scope=output)

  return outputs_to_scales_to_logits 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:56,代碼來源:train.py

示例9: _build_deeplab

# 需要導入模塊: from deeplab import model [as 別名]
# 或者: from deeplab.model import multi_scale_logits [as 別名]
def _build_deeplab(iterator, outputs_to_num_classes, ignore_label):
  """Builds a clone of DeepLab.

  Args:
    iterator: An iterator of type tf.data.Iterator for images and labels.
    outputs_to_num_classes: A map from output type to the number of classes. For
      example, for the task of semantic segmentation with 21 semantic classes,
      we would have outputs_to_num_classes['semantic'] = 21.
    ignore_label: Ignore label.
  """
  samples = iterator.get_next()

  # Add name to input and label nodes so we can add to summary.
  samples[common.IMAGE] = tf.identity(samples[common.IMAGE], name=common.IMAGE)
  samples[common.LABEL] = tf.identity(samples[common.LABEL], name=common.LABEL)

  model_options = common.ModelOptions(
      outputs_to_num_classes=outputs_to_num_classes,
      crop_size=FLAGS.train_crop_size,
      atrous_rates=FLAGS.atrous_rates,
      output_stride=FLAGS.output_stride)

  outputs_to_scales_to_logits = model.multi_scale_logits(
      samples[common.IMAGE],
      model_options=model_options,
      image_pyramid=FLAGS.image_pyramid,
      weight_decay=FLAGS.weight_decay,
      is_training=True,
      fine_tune_batch_norm=FLAGS.fine_tune_batch_norm,
      nas_training_hyper_parameters={
          'drop_path_keep_prob': FLAGS.drop_path_keep_prob,
          'total_training_steps': FLAGS.training_number_of_steps,
      })

  # Add name to graph node so we can add to summary.
  output_type_dict = outputs_to_scales_to_logits[common.OUTPUT_TYPE]
  output_type_dict[model.MERGED_LOGITS_SCOPE] = tf.identity(
      output_type_dict[model.MERGED_LOGITS_SCOPE], name=common.OUTPUT_TYPE)

  for output, num_classes in six.iteritems(outputs_to_num_classes):
    train_utils.add_softmax_cross_entropy_loss_for_each_scale(
        outputs_to_scales_to_logits[output],
        samples[common.LABEL],
        num_classes,
        ignore_label,
        loss_weight=1.0,
        upsample_logits=FLAGS.upsample_logits,
        hard_example_mining_step=FLAGS.hard_example_mining_step,
        top_k_percent_pixels=FLAGS.top_k_percent_pixels,
        scope=output)

    # Log the summary
    _log_summaries(samples[common.IMAGE], samples[common.LABEL], num_classes,
                   output_type_dict[model.MERGED_LOGITS_SCOPE]) 
開發者ID:IBM,項目名稱:MAX-Image-Segmenter,代碼行數:56,代碼來源:train.py

示例10: _build_deeplab

# 需要導入模塊: from deeplab import model [as 別名]
# 或者: from deeplab.model import multi_scale_logits [as 別名]
def _build_deeplab(inputs_queue, outputs_to_num_classes, ignore_label):
  """Builds a clone of DeepLab.

  Args:
    inputs_queue: A prefetch queue for images and labels.
    outputs_to_num_classes: A map from output type to the number of classes.
      For example, for the task of semantic segmentation with 21 semantic
      classes, we would have outputs_to_num_classes['semantic'] = 21.
    ignore_label: Ignore label.

  Returns:
    A map of maps from output_type (e.g., semantic prediction) to a
      dictionary of multi-scale logits names to logits. For each output_type,
      the dictionary has keys which correspond to the scales and values which
      correspond to the logits. For example, if `scales` equals [1.0, 1.5],
      then the keys would include 'merged_logits', 'logits_1.00' and
      'logits_1.50'.
  """
  samples = inputs_queue.dequeue()

  # Add name to input and label nodes so we can add to summary.
  samples[common.IMAGE] = tf.identity(
      samples[common.IMAGE], name=common.IMAGE)
  samples[common.LABEL] = tf.identity(
      samples[common.LABEL], name=common.LABEL)

  model_options = common.ModelOptions(
      outputs_to_num_classes=outputs_to_num_classes,
      crop_size=FLAGS.train_crop_size,
      atrous_rates=FLAGS.atrous_rates,
      output_stride=FLAGS.output_stride)
  outputs_to_scales_to_logits = model.multi_scale_logits(
      samples[common.IMAGE],
      model_options=model_options,
      image_pyramid=FLAGS.image_pyramid,
      weight_decay=FLAGS.weight_decay,
      is_training=True,
      fine_tune_batch_norm=FLAGS.fine_tune_batch_norm)

  # Add name to graph node so we can add to summary.
  output_type_dict = outputs_to_scales_to_logits[common.OUTPUT_TYPE]
  output_type_dict[model.MERGED_LOGITS_SCOPE] = tf.identity(
      output_type_dict[model.MERGED_LOGITS_SCOPE],
      name=common.OUTPUT_TYPE)

  for output, num_classes in six.iteritems(outputs_to_num_classes):
    train_utils.add_softmax_cross_entropy_loss_for_each_scale(
        outputs_to_scales_to_logits[output],
        samples[common.LABEL],
        num_classes,
        ignore_label,
        loss_weight=1.0,
        upsample_logits=FLAGS.upsample_logits,
        scope=output)

  return outputs_to_scales_to_logits 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:58,代碼來源:train.py

示例11: _build_deeplab

# 需要導入模塊: from deeplab import model [as 別名]
# 或者: from deeplab.model import multi_scale_logits [as 別名]
def _build_deeplab(iterator, outputs_to_num_classes, ignore_label):
  """Builds a clone of DeepLab.

  Args:
    iterator: An iterator of type tf.data.Iterator for images and labels.
    outputs_to_num_classes: A map from output type to the number of classes. For
      example, for the task of semantic segmentation with 21 semantic classes,
      we would have outputs_to_num_classes['semantic'] = 21.
    ignore_label: Ignore label.
  """
  samples = iterator.get_next()

  # Add name to input and label nodes so we can add to summary.
  samples[common.IMAGE] = tf.identity(samples[common.IMAGE], name=common.IMAGE)
  samples[common.LABEL] = tf.identity(samples[common.LABEL], name=common.LABEL)

  model_options = common.ModelOptions(
      outputs_to_num_classes=outputs_to_num_classes,
      crop_size=[int(sz) for sz in FLAGS.train_crop_size],
      atrous_rates=FLAGS.atrous_rates,
      output_stride=FLAGS.output_stride)

  outputs_to_scales_to_logits = model.multi_scale_logits(
      samples[common.IMAGE],
      model_options=model_options,
      image_pyramid=FLAGS.image_pyramid,
      weight_decay=FLAGS.weight_decay,
      is_training=True,
      fine_tune_batch_norm=FLAGS.fine_tune_batch_norm,
      nas_training_hyper_parameters={
          'drop_path_keep_prob': FLAGS.drop_path_keep_prob,
          'total_training_steps': FLAGS.training_number_of_steps,
      })

  # Add name to graph node so we can add to summary.
  output_type_dict = outputs_to_scales_to_logits[common.OUTPUT_TYPE]
  output_type_dict[model.MERGED_LOGITS_SCOPE] = tf.identity(
      output_type_dict[model.MERGED_LOGITS_SCOPE], name=common.OUTPUT_TYPE)

  for output, num_classes in six.iteritems(outputs_to_num_classes):
    train_utils.add_softmax_cross_entropy_loss_for_each_scale(
        outputs_to_scales_to_logits[output],
        samples[common.LABEL],
        num_classes,
        ignore_label,
        loss_weight=model_options.label_weights,
        upsample_logits=FLAGS.upsample_logits,
        hard_example_mining_step=FLAGS.hard_example_mining_step,
        top_k_percent_pixels=FLAGS.top_k_percent_pixels,
        scope=output) 
開發者ID:tensorflow,項目名稱:models,代碼行數:52,代碼來源:train.py


注:本文中的deeplab.model.multi_scale_logits方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。