本文整理匯總了Python中deeplab.input_preprocess.preprocess_image_and_label方法的典型用法代碼示例。如果您正苦於以下問題:Python input_preprocess.preprocess_image_and_label方法的具體用法?Python input_preprocess.preprocess_image_and_label怎麽用?Python input_preprocess.preprocess_image_and_label使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類deeplab.input_preprocess
的用法示例。
在下文中一共展示了input_preprocess.preprocess_image_and_label方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _create_input_tensors
# 需要導入模塊: from deeplab import input_preprocess [as 別名]
# 或者: from deeplab.input_preprocess import preprocess_image_and_label [as 別名]
def _create_input_tensors():
"""Creates and prepares input tensors for DeepLab model.
This method creates a 4-D uint8 image tensor 'ImageTensor' with shape
[1, None, None, 3]. The actual input tensor name to use during inference is
'ImageTensor:0'.
Returns:
image: Preprocessed 4-D float32 tensor with shape [1, crop_height,
crop_width, 3].
original_image_size: Original image shape tensor [height, width].
resized_image_size: Resized image shape tensor [height, width].
"""
# input_preprocess takes 4-D image tensor as input.
input_image = tf.placeholder(tf.uint8, [1, None, None, 3], name=_INPUT_NAME)
original_image_size = tf.shape(input_image)[1:3]
# Squeeze the dimension in axis=0 since `preprocess_image_and_label` assumes
# image to be 3-D.
image = tf.squeeze(input_image, axis=0)
resized_image, image, _ = input_preprocess.preprocess_image_and_label(
image,
label=None,
crop_height=FLAGS.crop_size[0],
crop_width=FLAGS.crop_size[1],
min_resize_value=FLAGS.min_resize_value,
max_resize_value=FLAGS.max_resize_value,
resize_factor=FLAGS.resize_factor,
is_training=False,
model_variant=FLAGS.model_variant)
resized_image_size = tf.shape(resized_image)[:2]
# Expand the dimension in axis=0, since the following operations assume the
# image to be 4-D.
image = tf.expand_dims(image, 0)
return image, original_image_size, resized_image_size
示例2: _preprocess_image
# 需要導入模塊: from deeplab import input_preprocess [as 別名]
# 或者: from deeplab.input_preprocess import preprocess_image_and_label [as 別名]
def _preprocess_image(self, sample):
"""Preprocesses the image and label.
Args:
sample: A sample containing image and label.
Returns:
sample: Sample with preprocessed image and label.
Raises:
ValueError: Ground truth label not provided during training.
"""
image = sample[common.IMAGE]
label = sample[common.LABELS_CLASS]
original_image, image, label = input_preprocess.preprocess_image_and_label(
image=image,
label=label,
crop_height=self.crop_size[0],
crop_width=self.crop_size[1],
min_resize_value=self.min_resize_value,
max_resize_value=self.max_resize_value,
resize_factor=self.resize_factor,
min_scale_factor=self.min_scale_factor,
max_scale_factor=self.max_scale_factor,
scale_factor_step_size=self.scale_factor_step_size,
ignore_label=self.ignore_label,
is_training=self.is_training,
model_variant=self.model_variant)
sample[common.IMAGE] = image
if not self.is_training:
# Original image is only used during visualization.
sample[common.ORIGINAL_IMAGE] = original_image
if label is not None:
sample[common.LABEL] = label
# Remove common.LABEL_CLASS key in the sample since it is only used to
# derive label and not used in training and evaluation.
sample.pop(common.LABELS_CLASS, None)
return sample
示例3: _preprocess_image
# 需要導入模塊: from deeplab import input_preprocess [as 別名]
# 或者: from deeplab.input_preprocess import preprocess_image_and_label [as 別名]
def _preprocess_image(self, sample):
"""Preprocesses the image and label.
Args:
sample: A sample containing image and label.
Returns:
sample: Sample with preprocessed image and label.
Raises:
ValueError: Ground truth label not provided during training.
"""
image = sample[common.IMAGE]
label = sample[common.LABELS_CLASS]
# print(self.crop_size)
original_image, image, label = input_preprocess.preprocess_image_and_label(
image=image,
label=label,
crop_height=self.crop_size[0],
crop_width=self.crop_size[1],
min_resize_value=self.min_resize_value,
max_resize_value=self.max_resize_value,
resize_factor=self.resize_factor,
min_scale_factor=self.min_scale_factor,
max_scale_factor=self.max_scale_factor,
scale_factor_step_size=self.scale_factor_step_size,
ignore_label=self.ignore_label,
is_training=self.is_training,
model_variant=self.model_variant)
sample[common.IMAGE] = image
if not self.is_training:
# Original image is only used during visualization.
sample[common.ORIGINAL_IMAGE] = original_image
if label is not None:
sample[common.LABEL] = label
# Remove common.LABEL_CLASS key in the sample since it is only used to
# derive label and not used in training and evaluation.
sample.pop(common.LABELS_CLASS, None)
return sample