本文整理匯總了Python中deeplab.common.ModelOptions方法的典型用法代碼示例。如果您正苦於以下問題:Python common.ModelOptions方法的具體用法?Python common.ModelOptions怎麽用?Python common.ModelOptions使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類deeplab.common
的用法示例。
在下文中一共展示了common.ModelOptions方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_params
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def get_params(ignore_label, num_classes, num_batches_per_epoch):
"""Build a dict of parameters from command line args."""
params = {k: FLAGS[k].value for k in FLAGS}
outputs_to_num_classes = {common.OUTPUT_TYPE: num_classes}
model_options = common.ModelOptions(
outputs_to_num_classes, FLAGS.crop_size, FLAGS.atrous_rates,
FLAGS.output_stride,
preprocessed_images_dtype=(
tf.bfloat16 if params['use_bfloat16'] else tf.float32))
params.update({'ignore_label': ignore_label,
'model_options': model_options,
'num_batches_per_epoch': num_batches_per_epoch,
'num_classes': num_classes,
'outputs_to_num_classes': outputs_to_num_classes})
tf.logging.debug('Params: ')
for k, v in sorted(params.items()):
tf.logging.debug('%s: %s', k, v)
return params
示例2: testDeepcopy
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def testDeepcopy(self):
num_classes = 21
model_options = common.ModelOptions(
outputs_to_num_classes={common.OUTPUT_TYPE: num_classes})
model_options_new = copy.deepcopy(model_options)
self.assertEqual((model_options_new.
outputs_to_num_classes[common.OUTPUT_TYPE]),
num_classes)
num_classes_new = 22
model_options_new.outputs_to_num_classes[common.OUTPUT_TYPE] = (
num_classes_new)
self.assertEqual(model_options.outputs_to_num_classes[common.OUTPUT_TYPE],
num_classes)
self.assertEqual((model_options_new.
outputs_to_num_classes[common.OUTPUT_TYPE]),
num_classes_new)
示例3: testWrongDeepLabVariant
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def testWrongDeepLabVariant(self):
model_options = common.ModelOptions([])._replace(
model_variant='no_such_variant')
with self.assertRaises(ValueError):
model._get_logits(images=[], model_options=model_options)
示例4: testForwardpassDeepLabv3plus
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def testForwardpassDeepLabv3plus(self):
crop_size = [33, 33]
outputs_to_num_classes = {'semantic': 3}
model_options = common.ModelOptions(
outputs_to_num_classes,
crop_size,
output_stride=16
)._replace(
add_image_level_feature=True,
aspp_with_batch_norm=True,
logits_kernel_size=1,
model_variant='mobilenet_v2') # Employ MobileNetv2 for fast test.
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
inputs = tf.random_uniform(
(1, crop_size[0], crop_size[1], 3))
outputs_to_scales_to_logits = model.multi_scale_logits(
inputs,
model_options,
image_pyramid=[1.0])
sess.run(tf.global_variables_initializer())
outputs_to_scales_to_logits = sess.run(outputs_to_scales_to_logits)
# Check computed results for each output type.
for output in outputs_to_num_classes:
scales_to_logits = outputs_to_scales_to_logits[output]
# Expect only one output.
self.assertEquals(len(scales_to_logits), 1)
for logits in scales_to_logits.values():
self.assertTrue(logits.any())
示例5: testOutputsToNumClasses
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def testOutputsToNumClasses(self):
num_classes = 21
model_options = common.ModelOptions(
outputs_to_num_classes={common.OUTPUT_TYPE: num_classes})
self.assertEqual(model_options.outputs_to_num_classes[common.OUTPUT_TYPE],
num_classes)
示例6: testForwardpassDeepLabv3plus
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def testForwardpassDeepLabv3plus(self):
crop_size = [33, 33]
outputs_to_num_classes = {'semantic': 3}
model_options = common.ModelOptions(
outputs_to_num_classes,
crop_size,
output_stride=16
)._replace(
add_image_level_feature=True,
aspp_with_batch_norm=True,
logits_kernel_size=1,
decoder_output_stride=[4],
model_variant='mobilenet_v2') # Employ MobileNetv2 for fast test.
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
inputs = tf.random_uniform(
(1, crop_size[0], crop_size[1], 3))
outputs_to_scales_to_logits = model.multi_scale_logits(
inputs,
model_options,
image_pyramid=[1.0])
sess.run(tf.global_variables_initializer())
outputs_to_scales_to_logits = sess.run(outputs_to_scales_to_logits)
# Check computed results for each output type.
for output in outputs_to_num_classes:
scales_to_logits = outputs_to_scales_to_logits[output]
# Expect only one output.
self.assertEqual(len(scales_to_logits), 1)
for logits in scales_to_logits.values():
self.assertTrue(logits.any())
示例7: testForwardpassDeepLabv3plus
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def testForwardpassDeepLabv3plus(self):
crop_size = [33, 33]
outputs_to_num_classes = {'semantic': 3}
model_options = common.ModelOptions(
outputs_to_num_classes,
crop_size,
output_stride=16
)._replace(
add_image_level_feature=True,
aspp_with_batch_norm=True,
logits_kernel_size=1,
model_variant='mobilenet_v2') # Employ MobileNetv2 for fast test.
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
inputs = tf.random_uniform(
(1, crop_size[0], crop_size[1], 3))
outputs_to_scales_to_logits = model.multi_scale_logits(
inputs,
model_options,
image_pyramid=[1.0])
sess.run(tf.global_variables_initializer())
outputs_to_scales_to_logits = sess.run(outputs_to_scales_to_logits)
# Check computed results for each output type.
for output in outputs_to_num_classes:
scales_to_logits = outputs_to_scales_to_logits[output]
# Expect only one output.
self.assertEqual(len(scales_to_logits), 1)
for logits in scales_to_logits.values():
self.assertTrue(logits.any())
示例8: _build_deeplab
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def _build_deeplab(self, inputs_queue, outputs_to_num_classes, ignore_label):
"""Builds a clone of DeepLab.
Args:
inputs_queue: A prefetch queue for images and labels.
outputs_to_num_classes: A map from output type to the number of classes.
For example, for the task of semantic segmentation with 21 semantic
classes, we would have outputs_to_num_classes['semantic'] = 21.
ignore_label: Ignore label.
Returns:
A map of maps from output_type (e.g., semantic prediction) to a
dictionary of multi-scale logits names to logits. For each output_type,
the dictionary has keys which correspond to the scales and values which
correspond to the logits. For example, if `scales` equals [1.0, 1.5],
then the keys would include 'merged_logits', 'logits_1.00' and
'logits_1.50'.
"""
training_configs = self.training_configs
samples = inputs_queue.dequeue()
model_options = common.ModelOptions(
outputs_to_num_classes=outputs_to_num_classes,
crop_size=training_configs['learning_params']['train_crop_size'],
atrous_rates=training_configs['fine_tuning_params']['atrous_rates'],
output_stride=training_configs['fine_tuning_params']['output_stride'])
outputs_to_scales_to_logits = model.multi_scale_logits(
samples[common.IMAGE],
model_options=model_options,
image_pyramid=training_configs['common']['image_pyramid'],
weight_decay=training_configs['learning_params']['weight_decay'],
is_training=True,
fine_tune_batch_norm=training_configs['fine_tuning_params']['fine_tune_batch_norm'])
for output, num_classes in outputs_to_num_classes.items():
train_utils.add_softmax_cross_entropy_loss_for_each_scale(
outputs_to_scales_to_logits[output],
samples[common.LABEL],
num_classes,
ignore_label,
loss_weight=1.0,
upsample_logits=training_configs['learning_params']['upsample_logits'],
scope=output)
return outputs_to_scales_to_logits
示例9: testBuildDeepLabv2
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def testBuildDeepLabv2(self):
batch_size = 2
crop_size = [41, 41]
# Test with two image_pyramids.
image_pyramids = [[1], [0.5, 1]]
# Test two model variants.
model_variants = ['xception_65', 'mobilenet_v2']
# Test with two output_types.
outputs_to_num_classes = {'semantic': 3,
'direction': 2}
expected_endpoints = [['merged_logits'],
['merged_logits',
'logits_0.50',
'logits_1.00']]
expected_num_logits = [1, 3]
for model_variant in model_variants:
model_options = common.ModelOptions(outputs_to_num_classes)._replace(
add_image_level_feature=False,
aspp_with_batch_norm=False,
aspp_with_separable_conv=False,
model_variant=model_variant)
for i, image_pyramid in enumerate(image_pyramids):
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g):
inputs = tf.random_uniform(
(batch_size, crop_size[0], crop_size[1], 3))
outputs_to_scales_to_logits = model.multi_scale_logits(
inputs, model_options, image_pyramid=image_pyramid)
# Check computed results for each output type.
for output in outputs_to_num_classes:
scales_to_logits = outputs_to_scales_to_logits[output]
self.assertListEqual(sorted(scales_to_logits.keys()),
sorted(expected_endpoints[i]))
# Expected number of logits = len(image_pyramid) + 1, since the
# last logits is merged from all the scales.
self.assertEqual(len(scales_to_logits), expected_num_logits[i])
示例10: main
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
tf.logging.info('Prepare to export model to: %s', FLAGS.export_path)
with tf.Graph().as_default():
image, image_size, resized_image_size = _create_input_tensors()
model_options = common.ModelOptions(
outputs_to_num_classes={common.OUTPUT_TYPE: FLAGS.num_classes},
crop_size=FLAGS.crop_size,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
if tuple(FLAGS.inference_scales) == (1.0,):
tf.logging.info('Exported model performs single-scale inference.')
predictions = model.predict_labels(
image,
model_options=model_options,
image_pyramid=FLAGS.image_pyramid)
else:
tf.logging.info('Exported model performs multi-scale inference.')
predictions = model.predict_labels_multi_scale(
image,
model_options=model_options,
eval_scales=FLAGS.inference_scales,
add_flipped_images=FLAGS.add_flipped_images)
# Crop the valid regions from the predictions.
semantic_predictions = tf.slice(
predictions[common.OUTPUT_TYPE],
[0, 0, 0],
[1, resized_image_size[0], resized_image_size[1]])
# Resize back the prediction to the original image size.
def _resize_label(label, label_size):
# Expand dimension of label to [1, height, width, 1] for resize operation.
label = tf.expand_dims(label, 3)
resized_label = tf.image.resize_images(
label,
label_size,
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
align_corners=True)
return tf.squeeze(resized_label, 3)
semantic_predictions = _resize_label(semantic_predictions, image_size)
semantic_predictions = tf.identity(semantic_predictions, name=_OUTPUT_NAME)
saver = tf.train.Saver(tf.model_variables())
tf.gfile.MakeDirs(os.path.dirname(FLAGS.export_path))
freeze_graph.freeze_graph_with_def_protos(
tf.get_default_graph().as_graph_def(add_shapes=True),
saver.as_saver_def(),
FLAGS.checkpoint_path,
_OUTPUT_NAME,
restore_op_name=None,
filename_tensor_name=None,
output_graph=FLAGS.export_path,
clear_devices=True,
initializer_nodes=None)
示例11: _build_deeplab
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def _build_deeplab(inputs_queue, outputs_to_num_classes, ignore_label):
"""Builds a clone of DeepLab.
Args:
inputs_queue: A prefetch queue for images and labels.
outputs_to_num_classes: A map from output type to the number of classes.
For example, for the task of semantic segmentation with 21 semantic
classes, we would have outputs_to_num_classes['semantic'] = 21.
ignore_label: Ignore label.
Returns:
A map of maps from output_type (e.g., semantic prediction) to a
dictionary of multi-scale logits names to logits. For each output_type,
the dictionary has keys which correspond to the scales and values which
correspond to the logits. For example, if `scales` equals [1.0, 1.5],
then the keys would include 'merged_logits', 'logits_1.00' and
'logits_1.50'.
"""
samples = inputs_queue.dequeue()
# add name to input and label nodes so we can add to summary
samples[common.IMAGE] = tf.identity(samples[common.IMAGE], name = common.IMAGE)
samples[common.LABEL] = tf.identity(samples[common.LABEL], name = common.LABEL)
model_options = common.ModelOptions(
outputs_to_num_classes=outputs_to_num_classes,
crop_size=FLAGS.train_crop_size,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
outputs_to_scales_to_logits = model.multi_scale_logits(
samples[common.IMAGE],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
weight_decay=FLAGS.weight_decay,
is_training=True,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm)
# add name to graph node so we can add to summary
outputs_to_scales_to_logits[common.OUTPUT_TYPE][model._MERGED_LOGITS_SCOPE] = tf.identity(
outputs_to_scales_to_logits[common.OUTPUT_TYPE][model._MERGED_LOGITS_SCOPE],
name = common.OUTPUT_TYPE
)
for output, num_classes in six.iteritems(outputs_to_num_classes):
train_utils.add_softmax_cross_entropy_loss_for_each_scale(
outputs_to_scales_to_logits[output],
samples[common.LABEL],
num_classes,
ignore_label,
loss_weight=1.0,
upsample_logits=FLAGS.upsample_logits,
scope=output)
return outputs_to_scales_to_logits
示例12: _build_deeplab
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def _build_deeplab(iterator, outputs_to_num_classes, ignore_label):
"""Builds a clone of DeepLab.
Args:
iterator: An iterator of type tf.data.Iterator for images and labels.
outputs_to_num_classes: A map from output type to the number of classes. For
example, for the task of semantic segmentation with 21 semantic classes,
we would have outputs_to_num_classes['semantic'] = 21.
ignore_label: Ignore label.
"""
samples = iterator.get_next()
# Add name to input and label nodes so we can add to summary.
samples[common.IMAGE] = tf.identity(samples[common.IMAGE], name=common.IMAGE)
samples[common.LABEL] = tf.identity(samples[common.LABEL], name=common.LABEL)
model_options = common.ModelOptions(
outputs_to_num_classes=outputs_to_num_classes,
crop_size=FLAGS.train_crop_size,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
outputs_to_scales_to_logits = model.multi_scale_logits(
samples[common.IMAGE],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
weight_decay=FLAGS.weight_decay,
is_training=True,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm,
nas_training_hyper_parameters={
'drop_path_keep_prob': FLAGS.drop_path_keep_prob,
'total_training_steps': FLAGS.training_number_of_steps,
})
# Add name to graph node so we can add to summary.
output_type_dict = outputs_to_scales_to_logits[common.OUTPUT_TYPE]
output_type_dict[model.MERGED_LOGITS_SCOPE] = tf.identity(
output_type_dict[model.MERGED_LOGITS_SCOPE], name=common.OUTPUT_TYPE)
for output, num_classes in six.iteritems(outputs_to_num_classes):
train_utils.add_softmax_cross_entropy_loss_for_each_scale(
outputs_to_scales_to_logits[output],
samples[common.LABEL],
num_classes,
ignore_label,
loss_weight=1.0,
upsample_logits=FLAGS.upsample_logits,
hard_example_mining_step=FLAGS.hard_example_mining_step,
top_k_percent_pixels=FLAGS.top_k_percent_pixels,
scope=output)
# Log the summary
_log_summaries(samples[common.IMAGE], samples[common.LABEL], num_classes,
output_type_dict[model.MERGED_LOGITS_SCOPE])
示例13: main
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
tf.logging.info('Prepare to export model to: %s', FLAGS.export_path)
with tf.Graph().as_default():
image, image_size, resized_image_size = _create_input_tensors()
model_options = common.ModelOptions(
outputs_to_num_classes={common.OUTPUT_TYPE: FLAGS.num_classes},
crop_size=FLAGS.crop_size,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
if tuple(FLAGS.inference_scales) == (1.0,):
tf.logging.info('Exported model performs single-scale inference.')
predictions = model.predict_labels(
image,
model_options=model_options,
image_pyramid=FLAGS.image_pyramid)
else:
tf.logging.info('Exported model performs multi-scale inference.')
predictions = model.predict_labels_multi_scale(
image,
model_options=model_options,
eval_scales=FLAGS.inference_scales,
add_flipped_images=FLAGS.add_flipped_images)
predictions = tf.cast(predictions[common.OUTPUT_TYPE], tf.float32)
# Crop the valid regions from the predictions.
semantic_predictions = tf.slice(
predictions,
[0, 0, 0],
[1, resized_image_size[0], resized_image_size[1]])
# Resize back the prediction to the original image size.
def _resize_label(label, label_size):
# Expand dimension of label to [1, height, width, 1] for resize operation.
label = tf.expand_dims(label, 3)
resized_label = tf.image.resize_images(
label,
label_size,
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
align_corners=True)
return tf.cast(tf.squeeze(resized_label, 3), tf.int32)
semantic_predictions = _resize_label(semantic_predictions, image_size)
semantic_predictions = tf.identity(semantic_predictions, name=_OUTPUT_NAME)
saver = tf.train.Saver(tf.model_variables())
tf.gfile.MakeDirs(os.path.dirname(FLAGS.export_path))
freeze_graph.freeze_graph_with_def_protos(
tf.get_default_graph().as_graph_def(add_shapes=True),
saver.as_saver_def(),
FLAGS.checkpoint_path,
_OUTPUT_NAME,
restore_op_name=None,
filename_tensor_name=None,
output_graph=FLAGS.export_path,
clear_devices=True,
initializer_nodes=None)
示例14: _build_deeplab
# 需要導入模塊: from deeplab import common [as 別名]
# 或者: from deeplab.common import ModelOptions [as 別名]
def _build_deeplab(inputs_queue, outputs_to_num_classes, ignore_label):
"""Builds a clone of DeepLab.
Args:
inputs_queue: A prefetch queue for images and labels.
outputs_to_num_classes: A map from output type to the number of classes.
For example, for the task of semantic segmentation with 21 semantic
classes, we would have outputs_to_num_classes['semantic'] = 21.
ignore_label: Ignore label.
Returns:
A map of maps from output_type (e.g., semantic prediction) to a
dictionary of multi-scale logits names to logits. For each output_type,
the dictionary has keys which correspond to the scales and values which
correspond to the logits. For example, if `scales` equals [1.0, 1.5],
then the keys would include 'merged_logits', 'logits_1.00' and
'logits_1.50'.
"""
samples = inputs_queue.dequeue()
# Add name to input and label nodes so we can add to summary.
samples[common.IMAGE] = tf.identity(
samples[common.IMAGE], name=common.IMAGE)
samples[common.LABEL] = tf.identity(
samples[common.LABEL], name=common.LABEL)
model_options = common.ModelOptions(
outputs_to_num_classes=outputs_to_num_classes,
crop_size=FLAGS.train_crop_size,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
outputs_to_scales_to_logits = model.multi_scale_logits(
samples[common.IMAGE],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
weight_decay=FLAGS.weight_decay,
is_training=True,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm)
# Add name to graph node so we can add to summary.
output_type_dict = outputs_to_scales_to_logits[common.OUTPUT_TYPE]
output_type_dict[model.MERGED_LOGITS_SCOPE] = tf.identity(
output_type_dict[model.MERGED_LOGITS_SCOPE],
name=common.OUTPUT_TYPE)
for output, num_classes in six.iteritems(outputs_to_num_classes):
train_utils.add_softmax_cross_entropy_loss_for_each_scale(
outputs_to_scales_to_logits[output],
samples[common.LABEL],
num_classes,
ignore_label,
loss_weight=1.0,
upsample_logits=FLAGS.upsample_logits,
scope=output)
return outputs_to_scales_to_logits