當前位置: 首頁>>代碼示例>>Python>>正文


Python tools.selTournament方法代碼示例

本文整理匯總了Python中deap.tools.selTournament方法的典型用法代碼示例。如果您正苦於以下問題:Python tools.selTournament方法的具體用法?Python tools.selTournament怎麽用?Python tools.selTournament使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在deap.tools的用法示例。


在下文中一共展示了tools.selTournament方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: geneticAlgorithm

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import selTournament [as 別名]
def geneticAlgorithm(X, y, n_population, n_generation):
    """
    Deap global variables
    Initialize variables to use eaSimple
    """
    # create individual
    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create("Individual", list, fitness=creator.FitnessMax)

    # create toolbox
    toolbox = base.Toolbox()
    toolbox.register("attr_bool", random.randint, 0, 1)
    toolbox.register("individual", tools.initRepeat,
                     creator.Individual, toolbox.attr_bool, len(X.columns))
    toolbox.register("population", tools.initRepeat, list,
                     toolbox.individual)
    toolbox.register("evaluate", getFitness, X=X, y=y)
    toolbox.register("mate", tools.cxOnePoint)
    toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
    toolbox.register("select", tools.selTournament, tournsize=3)

    # initialize parameters
    pop = toolbox.population(n=n_population)
    hof = tools.HallOfFame(n_population * n_generation)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", np.mean)
    stats.register("min", np.min)
    stats.register("max", np.max)

    # genetic algorithm
    pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2,
                                   ngen=n_generation, stats=stats, halloffame=hof,
                                   verbose=True)

    # return hall of fame
    return hof 
開發者ID:renatoosousa,項目名稱:GeneticAlgorithmForFeatureSelection,代碼行數:38,代碼來源:gaFeatureSelection.py

示例2: selTournamentWithSharing

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import selTournament [as 別名]
def selTournamentWithSharing(individuals, k, tournsize, fit_attr="fitness"):

    # get orig fitnesses:
    origFitnesses = [ind.fitness.values[0] for ind in individuals]

    # apply sharing to each individual:
    for i in range(len(individuals)):
        sharingSum = 1

        # iterate over all other individuals
        for j in range(len(individuals)):
            if i != j:
                # calculate eucledean distance between individuals:
                distance = math.sqrt(
                    ((individuals[i][0] - individuals[j][0]) ** 2) + ((individuals[i][1] - individuals[j][1]) ** 2))

                if distance < DISTANCE_THRESHOLD:
                    sharingSum += (1 - distance / (SHARING_EXTENT * DISTANCE_THRESHOLD))

        # reduce fitness accordingly:
        individuals[i].fitness.values = origFitnesses[i] / sharingSum,

    # apply original tools.selTournament() using modified fitness:
    selected = tools.selTournament(individuals, k, tournsize, fit_attr)

    # retrieve original fitness:
    for i, ind in enumerate(individuals):
        ind.fitness.values = origFitnesses[i],

    return selected


# genetic operators: 
開發者ID:PacktPublishing,項目名稱:Hands-On-Genetic-Algorithms-with-Python,代碼行數:35,代碼來源:03-optimize-himmelblau-sharing.py

示例3: create_toolbox

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import selTournament [as 別名]
def create_toolbox(num_bits):
    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create("Individual", list, fitness=creator.FitnessMax)

    # Initialize the toolbox
    toolbox = base.Toolbox()

    # Generate attributes 
    toolbox.register("attr_bool", random.randint, 0, 1)

    # Initialize structures
    toolbox.register("individual", tools.initRepeat, creator.Individual, 
        toolbox.attr_bool, num_bits)

    # Define the population to be a list of individuals
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)

    # Register the evaluation operator 
    toolbox.register("evaluate", eval_func)

    # Register the crossover operator
    toolbox.register("mate", tools.cxTwoPoint)

    # Register a mutation operator
    toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)

    # Operator for selecting individuals for breeding
    toolbox.register("select", tools.selTournament, tournsize=3)
    
    return toolbox 
開發者ID:PacktPublishing,項目名稱:Artificial-Intelligence-with-Python,代碼行數:32,代碼來源:bit_counter.py

示例4: create_toolbox

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import selTournament [as 別名]
def create_toolbox():
    pset = gp.PrimitiveSet("MAIN", 1)
    pset.addPrimitive(operator.add, 2)
    pset.addPrimitive(operator.sub, 2)
    pset.addPrimitive(operator.mul, 2)
    pset.addPrimitive(division_operator, 2)
    pset.addPrimitive(operator.neg, 1)
    pset.addPrimitive(math.cos, 1)
    pset.addPrimitive(math.sin, 1)

    pset.addEphemeralConstant("rand101", lambda: random.randint(-1,1))

    pset.renameArguments(ARG0='x')

    creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
    creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin)

    toolbox = base.Toolbox()

    toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=2)
    toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)
    toolbox.register("compile", gp.compile, pset=pset)
    toolbox.register("evaluate", eval_func, points=[x/10. for x in range(-10,10)])
    toolbox.register("select", tools.selTournament, tournsize=3)
    toolbox.register("mate", gp.cxOnePoint)
    toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
    toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)

    toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))
    toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))

    return toolbox 
開發者ID:PacktPublishing,項目名稱:Artificial-Intelligence-with-Python,代碼行數:35,代碼來源:symbol_regression.py

示例5: create_toolbox

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import selTournament [as 別名]
def create_toolbox():
    global robot, pset

    pset = gp.PrimitiveSet("MAIN", 0)
    pset.addPrimitive(robot.if_target_ahead, 2)
    pset.addPrimitive(Prog().prog2, 2)
    pset.addPrimitive(Prog().prog3, 3)
    pset.addTerminal(robot.move_forward)
    pset.addTerminal(robot.turn_left)
    pset.addTerminal(robot.turn_right)

    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMax)

    toolbox = base.Toolbox()

    # Attribute generator
    toolbox.register("expr_init", gp.genFull, pset=pset, min_=1, max_=2)

    # Structure initializers
    toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr_init)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)

    toolbox.register("evaluate", eval_func)
    toolbox.register("select", tools.selTournament, tournsize=7)
    toolbox.register("mate", gp.cxOnePoint)
    toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
    toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)

    return toolbox 
開發者ID:PacktPublishing,項目名稱:Artificial-Intelligence-with-Python,代碼行數:32,代碼來源:robot.py

示例6: runOptGenetic

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import selTournament [as 別名]
def runOptGenetic():
    '''

    @return:
    @rtype:
    '''
    # COULDDO parametrisation

    creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
    creator.create("Individual", list, fitness=creator.FitnessMin)

    IND_SIZE = num_slots * num_evs
    POP_SIZE = 30

    toolbox = base.Toolbox()
    toolbox.register("attr_float", rd.random)  # COULDDO heuristic init
    toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=IND_SIZE)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual, n=POP_SIZE)
    toolbox.register("evaluate", evaluate)
    toolbox.decorate("evaluate", tools.DeltaPenalty(feasible, 0.0, distance))
    toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=0.5, indpb=0.5)
    toolbox.register("select", tools.selTournament, tournsize=3)

    stats = tools.Statistics(key=lambda ind: ind.fitness.values)
    stats.register("avg", np.mean)
    stats.register("std", np.std)
    stats.register("min", np.min)
    stats.register("max", np.max)

    hof = tools.HallOfFame(1)
    population = toolbox.population()

# if no of-the-shelf algorithm used...
#     fits = toolbox.map(toolbox.evaluate, population)
#     for fit, ind in zip(fits, population):
#             ind.fitness.values = fit

    population, logbook = algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.3, ngen=5, stats=stats, verbose=True, halloffame=hof)

    sorted_pop = sorted(population, key=lambda ind: ind.fitness)

    ev_schedules = np.asarray(best).reshape((num_evs, num_slots))
    schedules = np.zeros((num_households, num_slots)).tolist()

    for i in range(num_evs):
        schedules[evs[i].position] = ev_schedules[i].tolist()
        evs[i].schedule = schedules[evs[i].position]

    return schedules

# *****************************************************************************************************
# * Metaheuristics Side Functions
# *****************************************************************************************************

# UNUSED 
開發者ID:fneum,項目名稱:ev_chargingcoordination2017,代碼行數:58,代碼來源:run.py


注:本文中的deap.tools.selTournament方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。