當前位置: 首頁>>代碼示例>>Python>>正文


Python tools.mutPolynomialBounded方法代碼示例

本文整理匯總了Python中deap.tools.mutPolynomialBounded方法的典型用法代碼示例。如果您正苦於以下問題:Python tools.mutPolynomialBounded方法的具體用法?Python tools.mutPolynomialBounded怎麽用?Python tools.mutPolynomialBounded使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在deap.tools的用法示例。


在下文中一共展示了tools.mutPolynomialBounded方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: nsga2

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import mutPolynomialBounded [as 別名]
def nsga2(self, fit_func, fit_func_args=[], init_pop=None, cxpb=0.95, mutpb=0.95):

        # init
        random.seed(self.seed)
        np.random.seed(self.seed)

        self.fit_func = fit_func
        self.fit_func_args = fit_func_args
        self.cxpb = cxpb  # cross probability
        self.mutpb = mutpb  # mutation probability

        self.init_deap_functions()
        self.toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=self.bounds_min, up=self.bounds_max,
                              eta=1.0)  # crossover = mate
        self.toolbox.register("mutate", tools.mutPolynomialBounded, eta=10.0, low=self.bounds_min, up=self.bounds_max,
                              indpb=self.mutpb)
        # self.toolbox.register("preselect", tools.selTournamentDCD)
        self.toolbox.register("preselect", tools.selRandom)
        self.toolbox.register("select", tools.selNSGA2)

        if self.log_print: print("Number of used CPU: %i" % MPI_SIZE)

        # optimization
        result = self.optimize(init_pop)

        if self.log_print: print("End of (successful) evolution")

        result_nd = self.get_nondominated_inds(result)

        if self.log_file:
            fh1 = open(self.log_file, 'a')
            fh1.write("\n-------------------------- End of (successful) evolution --------------------------\n")
            fh1.write("\nNon dominated individuals\n")
            for ind in result_nd:
                fh1.write("ind --> fit_func: " + str(ind) + ' --> ' + str(ind.fitness.values) + '\n')
            fh1.close()

        return result_nd 
開發者ID:ocelot-collab,項目名稱:ocelot,代碼行數:40,代碼來源:moga.py

示例2: mutate

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import mutPolynomialBounded [as 別名]
def mutate(self, individual, probability):
        if self.method == 'Polynomial':
            return tools.mutPolynomialBounded(individual, eta=20.0, low=0.0, up=1.0, indpb=1 / len(individual))[0]
        elif self.method == 'Shuffle':
            return tools.mutShuffleIndexes(individual, probability)[0] 
開發者ID:architecture-building-systems,項目名稱:CityEnergyAnalyst,代碼行數:7,代碼來源:mutations.py

示例3: mutate

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import mutPolynomialBounded [as 別名]
def mutate(self, indiv):
    """ Mutate the individual design variables with different strategies according to the variables types :
            - interval : Polynomial Bounded mutation or user defined
            - set : Resampling the variable according to its initialization function
            - pyleecan : Resampling the variable according to its initialization function

        Parameters 
        ----------
        solver : Solver
            solver to perform the genetic algorithm with DEAP 
        indiv : individual (e.g. OptiGenAlgIndivDeap)
            individual to mutate
            
        Returns
        -------
        is_mutation : boolean
            True if at least one mutation occured
    """
    is_mutation = False

    for k, design_var_name in enumerate(indiv.design_var_name_list):
        if self.p_mutate < random.random():  # Perform mutation
            is_mutation = True

            if self.mutator == None:
                if (
                    indiv.design_var[design_var_name].type_var == "interval"
                ):  # Interval variable
                    # Using polynomial bounded mutation as in Deb and al., "A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II"
                    if isinstance(indiv[k], Iterable):
                        indiv[k] = mutPolynomialBounded(
                            indiv[k], 20, *indiv.design_var[design_var_name].space, 1
                        )[0]
                    else:
                        # Function takes list in argument and returns list
                        indiv[k] = mutPolynomialBounded(
                            [indiv[k]], 20, *indiv.design_var[design_var_name].space, 1
                        )[0][0]
                else:
                    indiv[k] = indiv.design_var[design_var_name].function(
                        indiv.design_var[design_var_name].space
                    )
            else:  # User defined mutator
                if (
                    indiv.design_var[design_var_name].type_var == "interval"
                ):  # Interval variable
                    indiv[k] = self.mutator(indiv[k])
                else:
                    # TODO Allow to redefine mutators for pyleecan types or set
                    indiv[k] = indiv.design_var[design_var_name].function(
                        indiv.design_var[design_var_name].space
                    )
    return is_mutation 
開發者ID:Eomys,項目名稱:pyleecan,代碼行數:55,代碼來源:mutate.py

示例4: test_nsga2

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import mutPolynomialBounded [as 別名]
def test_nsga2():
    NDIM = 5
    BOUND_LOW, BOUND_UP = 0.0, 1.0
    MU = 16
    NGEN = 100

    toolbox = base.Toolbox()
    toolbox.register("attr_float", random.uniform, BOUND_LOW, BOUND_UP)
    toolbox.register("individual", tools.initRepeat, creator.__dict__[INDCLSNAME], toolbox.attr_float, NDIM)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)

    toolbox.register("evaluate", benchmarks.zdt1)
    toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0)
    toolbox.register("mutate", tools.mutPolynomialBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0, indpb=1.0/NDIM)
    toolbox.register("select", tools.selNSGA2)

    pop = toolbox.population(n=MU)
    fitnesses = toolbox.map(toolbox.evaluate, pop)
    for ind, fit in zip(pop, fitnesses):
        ind.fitness.values = fit

    pop = toolbox.select(pop, len(pop))
    for gen in range(1, NGEN):
        offspring = tools.selTournamentDCD(pop, len(pop))
        offspring = [toolbox.clone(ind) for ind in offspring]

        for ind1, ind2 in zip(offspring[::2], offspring[1::2]):
            if random.random() <= 0.9:
                toolbox.mate(ind1, ind2)

            toolbox.mutate(ind1)
            toolbox.mutate(ind2)
            del ind1.fitness.values, ind2.fitness.values

        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        pop = toolbox.select(pop + offspring, MU)

    hv = hypervolume(pop, [11.0, 11.0])
    # hv = 120.777 # Optimal value

    assert hv > HV_THRESHOLD, "Hypervolume is lower than expected %f < %f" % (hv, HV_THRESHOLD)

    for ind in pop:
        assert not (any(numpy.asarray(ind) < BOUND_LOW) or any(numpy.asarray(ind) > BOUND_UP)) 
開發者ID:DEAP,項目名稱:deap,代碼行數:50,代碼來源:test_algorithms.py

示例5: test_nsga3

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import mutPolynomialBounded [as 別名]
def test_nsga3():
    NDIM = 5
    BOUND_LOW, BOUND_UP = 0.0, 1.0
    MU = 16
    NGEN = 100

    ref_points = tools.uniform_reference_points(2, p=12)

    toolbox = base.Toolbox()
    toolbox.register("attr_float", random.uniform, BOUND_LOW, BOUND_UP)
    toolbox.register("individual", tools.initRepeat, creator.__dict__[INDCLSNAME], toolbox.attr_float, NDIM)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)

    toolbox.register("evaluate", benchmarks.zdt1)
    toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0)
    toolbox.register("mutate", tools.mutPolynomialBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0, indpb=1.0/NDIM)
    toolbox.register("select", tools.selNSGA3, ref_points=ref_points)

    pop = toolbox.population(n=MU)
    fitnesses = toolbox.map(toolbox.evaluate, pop)
    for ind, fit in zip(pop, fitnesses):
        ind.fitness.values = fit

    pop = toolbox.select(pop, len(pop))
     # Begin the generational process
    for gen in range(1, NGEN):
        offspring = algorithms.varAnd(pop, toolbox, 1.0, 1.0)

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        # Select the next generation population
        pop = toolbox.select(pop + offspring, MU)

    hv = hypervolume(pop, [11.0, 11.0])
    # hv = 120.777 # Optimal value

    assert hv > HV_THRESHOLD, "Hypervolume is lower than expected %f < %f" % (hv, HV_THRESHOLD)

    for ind in pop:
        assert not (any(numpy.asarray(ind) < BOUND_LOW) or any(numpy.asarray(ind) > BOUND_UP)) 
開發者ID:DEAP,項目名稱:deap,代碼行數:46,代碼來源:test_algorithms.py


注:本文中的deap.tools.mutPolynomialBounded方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。