當前位置: 首頁>>代碼示例>>Python>>正文


Python tools.initIterate方法代碼示例

本文整理匯總了Python中deap.tools.initIterate方法的典型用法代碼示例。如果您正苦於以下問題:Python tools.initIterate方法的具體用法?Python tools.initIterate怎麽用?Python tools.initIterate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在deap.tools的用法示例。


在下文中一共展示了tools.initIterate方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _setup_toolbox

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import initIterate [as 別名]
def _setup_toolbox(self):
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            creator.create('FitnessMulti', base.Fitness, weights=(-1.0, 1.0))
            creator.create('Individual', gp.PrimitiveTree, fitness=creator.FitnessMulti, statistics=dict)

        self._toolbox = base.Toolbox()
        self._toolbox.register('expr', self._gen_grow_safe, pset=self._pset, min_=self._min, max_=self._max)
        self._toolbox.register('individual', tools.initIterate, creator.Individual, self._toolbox.expr)
        self._toolbox.register('population', tools.initRepeat, list, self._toolbox.individual)
        self._toolbox.register('compile', self._compile_to_sklearn)
        self._toolbox.register('select', tools.selNSGA2)
        self._toolbox.register('mate', self._mate_operator)
        if self.tree_structure:
            self._toolbox.register('expr_mut', self._gen_grow_safe, min_=self._min, max_=self._max + 1)
        else:
            self._toolbox.register('expr_mut', self._gen_grow_safe, min_=self._min, max_=self._max)
        self._toolbox.register('mutate', self._random_mutation_operator) 
開發者ID:EpistasisLab,項目名稱:tpot,代碼行數:20,代碼來源:base.py

示例2: init_deap_functions

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import initIterate [as 別名]
def init_deap_functions(self):

        creator.create("Fitness", base.Fitness, weights=self.weights)
        creator.create("Individual", list, fitness=creator.Fitness)

        self.toolbox = base.Toolbox()

        self.toolbox.register("individual", tools.initIterate, creator.Individual, self.generate_ind)
        self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)

        self.toolbox.register("evaluate", self.fit_func)

        if self.penalty != None:
            self.toolbox.decorate("evaluate", tools.DeltaPenality(self.feasible, self.inf_val)) 
開發者ID:ocelot-collab,項目名稱:ocelot,代碼行數:16,代碼來源:moga.py

示例3: create_toolbox

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import initIterate [as 別名]
def create_toolbox():
    pset = gp.PrimitiveSet("MAIN", 1)
    pset.addPrimitive(operator.add, 2)
    pset.addPrimitive(operator.sub, 2)
    pset.addPrimitive(operator.mul, 2)
    pset.addPrimitive(division_operator, 2)
    pset.addPrimitive(operator.neg, 1)
    pset.addPrimitive(math.cos, 1)
    pset.addPrimitive(math.sin, 1)

    pset.addEphemeralConstant("rand101", lambda: random.randint(-1,1))

    pset.renameArguments(ARG0='x')

    creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
    creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin)

    toolbox = base.Toolbox()

    toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=2)
    toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)
    toolbox.register("compile", gp.compile, pset=pset)
    toolbox.register("evaluate", eval_func, points=[x/10. for x in range(-10,10)])
    toolbox.register("select", tools.selTournament, tournsize=3)
    toolbox.register("mate", gp.cxOnePoint)
    toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
    toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)

    toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))
    toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))

    return toolbox 
開發者ID:PacktPublishing,項目名稱:Artificial-Intelligence-with-Python,代碼行數:35,代碼來源:symbol_regression.py

示例4: create_toolbox

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import initIterate [as 別名]
def create_toolbox():
    global robot, pset

    pset = gp.PrimitiveSet("MAIN", 0)
    pset.addPrimitive(robot.if_target_ahead, 2)
    pset.addPrimitive(Prog().prog2, 2)
    pset.addPrimitive(Prog().prog3, 3)
    pset.addTerminal(robot.move_forward)
    pset.addTerminal(robot.turn_left)
    pset.addTerminal(robot.turn_right)

    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMax)

    toolbox = base.Toolbox()

    # Attribute generator
    toolbox.register("expr_init", gp.genFull, pset=pset, min_=1, max_=2)

    # Structure initializers
    toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr_init)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)

    toolbox.register("evaluate", eval_func)
    toolbox.register("select", tools.selTournament, tournsize=7)
    toolbox.register("mate", gp.cxOnePoint)
    toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
    toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)

    return toolbox 
開發者ID:PacktPublishing,項目名稱:Artificial-Intelligence-with-Python,代碼行數:32,代碼來源:robot.py

示例5: test_statistics_compile

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import initIterate [as 別名]
def test_statistics_compile(self):
        l = 10
        gen_idx = partial(random.sample, range(l), l)
        i = tools.initIterate(list, gen_idx)
        self.assertSetEqual(set(i), set(range(l))) 
開發者ID:DEAP,項目名稱:deap,代碼行數:7,代碼來源:test_init.py

示例6: get_toolbox

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import initIterate [as 別名]
def get_toolbox(self, predictors, response, pset, variable_type_indices, variable_names):
        subset_size = int(math.floor(predictors.shape[0] * self.subset_proportion))
        creator.create("Error", base.Fitness, weights=(-1.0,))
        creator.create("Individual", sp.SimpleParametrizedPrimitiveTree, fitness=creator.Error, age=int)
        toolbox = base.Toolbox()
        toolbox.register("expr", sp.generate_parametrized_expression,
                         partial(gp.genHalfAndHalf, pset=pset, min_=self.min_depth_init, max_=self.max_depth_init),
                         variable_type_indices, variable_names)
        toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)
        toolbox.register("population", tools.initRepeat, list, toolbox.individual)
        toolbox.register("compile", gp.compile, pset=pset)
        toolbox.register("grow", sp.generate_parametrized_expression,
                         partial(gp.genGrow, pset=pset, min_=self.min_gen_grow, max_=self.max_gen_grow),
                         variable_type_indices, variable_names)
        toolbox.register("mutate", operators.mutation_biased, expr=toolbox.grow,
                         node_selector=operators.uniform_depth_node_selector)
        toolbox.decorate("mutate", operators.static_limit(key=operator.attrgetter("height"), max_value=self.max_height))
        toolbox.decorate("mutate", operators.static_limit(key=len, max_value=self.max_size))
        # self.history = tools.History()
        # toolbox.decorate("mutate", self.history.decorator)
        toolbox.register("error_func", self.error_function)
        expression_dict = cachetools.LRUCache(maxsize=1000)
        subset_selection_archive = subset_selection.RandomSubsetSelectionArchive(frequency=self.subset_change_frequency,
                                                                                 predictors=predictors,
                                                                                 response=response,
                                                                                 subset_size=subset_size,
                                                                                 expression_dict=expression_dict)
        evaluate_function = partial(subset_selection.fast_numpy_evaluate_subset,
                                    get_node_semantics=sp.get_node_semantics,
                                    context=pset.context,
                                    subset_selection_archive=subset_selection_archive,
                                    error_function=toolbox.error_func,
                                    expression_dict=expression_dict)
        toolbox.register("evaluate_error", evaluate_function)
        self.multi_archive = utils.get_archive(100)
        if self.log_mutate:
            mutation_stats_archive = archive.MutationStatsArchive(evaluate_function)
            toolbox.decorate("mutate", operators.stats_collector(archive=mutation_stats_archive))
            self.multi_archive.archives.append(mutation_stats_archive)
        self.multi_archive.archives.append(subset_selection_archive)
        self.mstats = reports.configure_parametrized_inf_protected_stats()
        self.pop = toolbox.population(n=self.pop_size)
        toolbox.register("run", truncation_with_elite.optimize, population=self.pop, toolbox=toolbox,
                         ngen=self.ngen, stats=self.mstats, archive=self.multi_archive, verbose=False,
                         history=None)
                         # history=self.history)
        toolbox.register("save", reports.save_log_to_csv)
        toolbox.decorate("save", reports.save_archive(self.multi_archive))
        return toolbox 
開發者ID:cfusting,項目名稱:fast-symbolic-regression,代碼行數:51,代碼來源:truncation_elite.py


注:本文中的deap.tools.initIterate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。