當前位置: 首頁>>代碼示例>>Python>>正文


Python tools.Statistics方法代碼示例

本文整理匯總了Python中deap.tools.Statistics方法的典型用法代碼示例。如果您正苦於以下問題:Python tools.Statistics方法的具體用法?Python tools.Statistics怎麽用?Python tools.Statistics使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在deap.tools的用法示例。


在下文中一共展示了tools.Statistics方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
    random.seed(169)

    pop = toolbox.population(n=300)

    hof = tools.HallOfFame(1)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    algorithms.eaSimple(pop, toolbox, 0.7, 0.2, 40, stats=stats, 
                        halloffame=hof)
    
    return pop, stats, hof 
開發者ID:DEAP,項目名稱:deap,代碼行數:18,代碼來源:tsp.py

示例2: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
    random.seed(64)
    
    pop = toolbox.population(n=300)
    
    # Numpy equality function (operators.eq) between two arrays returns the
    # equality element wise, which raises an exception in the if similar()
    # check of the hall of fame. Using a different equality function like
    # numpy.array_equal or numpy.allclose solve this issue.
    hof = tools.HallOfFame(1, similar=numpy.array_equal)
    
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40, stats=stats,
                        halloffame=hof)

    return pop, stats, hof 
開發者ID:DEAP,項目名稱:deap,代碼行數:23,代碼來源:onemax_numpy.py

示例3: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
    random.seed(64)

    MU, LAMBDA = 50, 100
    pop = toolbox.population(n=MU)
    hof = tools.ParetoFront()
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean, axis=0)
    stats.register("std", numpy.std, axis=0)
    stats.register("min", numpy.min, axis=0)
    stats.register("max", numpy.max, axis=0)
    
    algorithms.eaMuPlusLambda(pop, toolbox, mu=MU, lambda_=LAMBDA, 
                              cxpb=0.5, mutpb=0.2, ngen=150, 
                              stats=stats, halloffame=hof)

    return pop, stats, hof 
開發者ID:DEAP,項目名稱:deap,代碼行數:19,代碼來源:kursawefct.py

示例4: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
    # random.seed(64)
    MU, LAMBDA = 100, 200
    pop = toolbox.population(n=MU)
    hof = tools.ParetoFront()
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean, axis=0)
    stats.register("std", numpy.std, axis=0)
    stats.register("min", numpy.min, axis=0)
    stats.register("max", numpy.max, axis=0)
    
    pop, logbook = algorithms.eaMuPlusLambda(pop, toolbox, mu=MU, lambda_=LAMBDA,
                                             cxpb=0.7, mutpb=0.3, ngen=40, 
                                             stats=stats, halloffame=hof)
    
    return pop, logbook, hof 
開發者ID:DEAP,項目名稱:deap,代碼行數:18,代碼來源:evoknn.py

示例5: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
    random.seed(64)
    NGEN = 50
    MU = 50
    LAMBDA = 100
    CXPB = 0.7
    MUTPB = 0.2
    
    pop = toolbox.population(n=MU)
    hof = tools.ParetoFront()
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean, axis=0)
    stats.register("std", numpy.std, axis=0)
    stats.register("min", numpy.min, axis=0)
    stats.register("max", numpy.max, axis=0)
    
    algorithms.eaMuPlusLambda(pop, toolbox, MU, LAMBDA, CXPB, MUTPB, NGEN, stats,
                              halloffame=hof)
    
    return pop, stats, hof 
開發者ID:DEAP,項目名稱:deap,代碼行數:22,代碼來源:knapsack.py

示例6: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
    NGEN = 40
    MU = 100
    LAMBDA = 200
    CXPB = 0.3
    MUTPB = 0.6

    pop = toolbox.population(n=MU)
    hof = tools.ParetoFront()
    
    price_stats = tools.Statistics(key=lambda ind: ind.fitness.values[0])
    time_stats = tools.Statistics(key=lambda ind: ind.fitness.values[1])
    stats = tools.MultiStatistics(price=price_stats, time=time_stats)
    stats.register("avg", numpy.mean, axis=0)
    stats.register("std", numpy.std, axis=0)
    stats.register("min", numpy.min, axis=0)

    algorithms.eaMuPlusLambda(pop, toolbox, MU, LAMBDA, CXPB, MUTPB, NGEN,
                              stats, halloffame=hof)

    return pop, stats, hof 
開發者ID:DEAP,項目名稱:deap,代碼行數:23,代碼來源:xkcd.py

示例7: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
    numpy.random.seed()

    # The CMA-ES One Plus Lambda algorithm takes a initialized parent as argument
    parent = creator.Individual((numpy.random.rand() * 5) - 1 for _ in range(N))
    parent.fitness.values = toolbox.evaluate(parent)
    
    strategy = cma.StrategyOnePlusLambda(parent, sigma=5.0, lambda_=10)
    toolbox.register("generate", strategy.generate, ind_init=creator.Individual)
    toolbox.register("update", strategy.update)

    hof = tools.HallOfFame(1)    
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
   
    algorithms.eaGenerateUpdate(toolbox, ngen=200, halloffame=hof, stats=stats) 
開發者ID:DEAP,項目名稱:deap,代碼行數:21,代碼來源:cma_1+l_minfct.py

示例8: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
    # The cma module uses the numpy random number generator
    numpy.random.seed(128)

    # The CMA-ES algorithm takes a population of one individual as argument
    # The centroid is set to a vector of 5.0 see http://www.lri.fr/~hansen/cmaes_inmatlab.html
    # for more details about the rastrigin and other tests for CMA-ES    
    strategy = cma.Strategy(centroid=[5.0]*N, sigma=5.0, lambda_=20*N)
    toolbox.register("generate", strategy.generate, creator.Individual)
    toolbox.register("update", strategy.update)

    hof = tools.HallOfFame(1)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    #logger = tools.EvolutionLogger(stats.functions.keys())
   
    # The CMA-ES algorithm converge with good probability with those settings
    algorithms.eaGenerateUpdate(toolbox, ngen=250, stats=stats, halloffame=hof)
    
    # print "Best individual is %s, %s" % (hof[0], hof[0].fitness.values)
    return hof[0].fitness.values[0] 
開發者ID:DEAP,項目名稱:deap,代碼行數:26,代碼來源:cma_minfct.py

示例9: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
    random.seed(69)
    
    with  open("ant/santafe_trail.txt") as trail_file:
      ant.parse_matrix(trail_file)
    
    pop = toolbox.population(n=300)
    hof = tools.HallOfFame(1)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    algorithms.eaSimple(pop, toolbox, 0.5, 0.2, 40, stats, halloffame=hof)
    
    return pop, hof, stats 
開發者ID:DEAP,項目名稱:deap,代碼行數:19,代碼來源:ant.py

示例10: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
    #random.seed(318)

    pop = toolbox.population(n=300)
    hof = tools.HallOfFame(1)
    
    stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
    stats_size = tools.Statistics(len)
    mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
    mstats.register("avg", numpy.mean)
    mstats.register("std", numpy.std)
    mstats.register("min", numpy.min)
    mstats.register("max", numpy.max)

    pop, log = algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats=mstats,
                                   halloffame=hof, verbose=True)
    # print log
    return pop, log, hof 
開發者ID:DEAP,項目名稱:deap,代碼行數:20,代碼來源:symbreg_epsilon_lexicase.py

示例11: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
    random.seed(318)

    pop = toolbox.population(n=300)
    hof = tools.HallOfFame(1)
    
    stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
    stats_size = tools.Statistics(len)
    mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
    mstats.register("avg", numpy.mean)
    mstats.register("std", numpy.std)
    mstats.register("min", numpy.min)
    mstats.register("max", numpy.max)

    pop, log = algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats=mstats,
                                   halloffame=hof, verbose=True)
    # print log
    return pop, log, hof 
開發者ID:DEAP,項目名稱:deap,代碼行數:20,代碼來源:symbreg.py

示例12: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
    N, LAMBDA = 30, 1000
    MU = int(LAMBDA/4)
    strategy = EMNA(centroid=[5.0]*N, sigma=5.0, mu=MU, lambda_=LAMBDA)
    
    toolbox = base.Toolbox()
    toolbox.register("evaluate", benchmarks.sphere)
    toolbox.register("generate", strategy.generate, creator.Individual)
    toolbox.register("update", strategy.update)
    
    # Numpy equality function (operators.eq) between two arrays returns the
    # equality element wise, which raises an exception in the if similar()
    # check of the hall of fame. Using a different equality function like
    # numpy.array_equal or numpy.allclose solve this issue.
    hof = tools.HallOfFame(1, similar=numpy.array_equal)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    algorithms.eaGenerateUpdate(toolbox, ngen=150, stats=stats, halloffame=hof)
    
    return hof[0].fitness.values[0] 
開發者ID:DEAP,項目名稱:deap,代碼行數:26,代碼來源:emna.py

示例13: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main(seed):
    random.seed(seed)

    NGEN = 50

    #Initialize the PBIL EDA
    pbil = PBIL(ndim=50, learning_rate=0.3, mut_prob=0.1, 
                mut_shift=0.05, lambda_=20)

    toolbox.register("generate", pbil.generate, creator.Individual)
    toolbox.register("update", pbil.update)

    # Statistics computation
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)

    pop, logbook = algorithms.eaGenerateUpdate(toolbox, NGEN, stats=stats, verbose=True) 
開發者ID:DEAP,項目名稱:deap,代碼行數:22,代碼來源:pbil.py

示例14: main

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
    random.seed(64)
    
    pop = toolbox.population(n=300)
    hof = tools.HallOfFame(1)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40, 
                                   stats=stats, halloffame=hof, verbose=True)
    
    return pop, log, hof 
開發者ID:soravux,項目名稱:scoop,代碼行數:17,代碼來源:deap_ga_onemax.py

示例15: geneticAlgorithm

# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def geneticAlgorithm(X, y, n_population, n_generation):
    """
    Deap global variables
    Initialize variables to use eaSimple
    """
    # create individual
    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create("Individual", list, fitness=creator.FitnessMax)

    # create toolbox
    toolbox = base.Toolbox()
    toolbox.register("attr_bool", random.randint, 0, 1)
    toolbox.register("individual", tools.initRepeat,
                     creator.Individual, toolbox.attr_bool, len(X.columns))
    toolbox.register("population", tools.initRepeat, list,
                     toolbox.individual)
    toolbox.register("evaluate", getFitness, X=X, y=y)
    toolbox.register("mate", tools.cxOnePoint)
    toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
    toolbox.register("select", tools.selTournament, tournsize=3)

    # initialize parameters
    pop = toolbox.population(n=n_population)
    hof = tools.HallOfFame(n_population * n_generation)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", np.mean)
    stats.register("min", np.min)
    stats.register("max", np.max)

    # genetic algorithm
    pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2,
                                   ngen=n_generation, stats=stats, halloffame=hof,
                                   verbose=True)

    # return hall of fame
    return hof 
開發者ID:renatoosousa,項目名稱:GeneticAlgorithmForFeatureSelection,代碼行數:38,代碼來源:gaFeatureSelection.py


注:本文中的deap.tools.Statistics方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。