本文整理匯總了Python中deap.tools.Statistics方法的典型用法代碼示例。如果您正苦於以下問題:Python tools.Statistics方法的具體用法?Python tools.Statistics怎麽用?Python tools.Statistics使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類deap.tools
的用法示例。
在下文中一共展示了tools.Statistics方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
random.seed(169)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.7, 0.2, 40, stats=stats,
halloffame=hof)
return pop, stats, hof
示例2: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
random.seed(64)
pop = toolbox.population(n=300)
# Numpy equality function (operators.eq) between two arrays returns the
# equality element wise, which raises an exception in the if similar()
# check of the hall of fame. Using a different equality function like
# numpy.array_equal or numpy.allclose solve this issue.
hof = tools.HallOfFame(1, similar=numpy.array_equal)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40, stats=stats,
halloffame=hof)
return pop, stats, hof
示例3: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
random.seed(64)
MU, LAMBDA = 50, 100
pop = toolbox.population(n=MU)
hof = tools.ParetoFront()
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean, axis=0)
stats.register("std", numpy.std, axis=0)
stats.register("min", numpy.min, axis=0)
stats.register("max", numpy.max, axis=0)
algorithms.eaMuPlusLambda(pop, toolbox, mu=MU, lambda_=LAMBDA,
cxpb=0.5, mutpb=0.2, ngen=150,
stats=stats, halloffame=hof)
return pop, stats, hof
示例4: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
# random.seed(64)
MU, LAMBDA = 100, 200
pop = toolbox.population(n=MU)
hof = tools.ParetoFront()
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean, axis=0)
stats.register("std", numpy.std, axis=0)
stats.register("min", numpy.min, axis=0)
stats.register("max", numpy.max, axis=0)
pop, logbook = algorithms.eaMuPlusLambda(pop, toolbox, mu=MU, lambda_=LAMBDA,
cxpb=0.7, mutpb=0.3, ngen=40,
stats=stats, halloffame=hof)
return pop, logbook, hof
示例5: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
random.seed(64)
NGEN = 50
MU = 50
LAMBDA = 100
CXPB = 0.7
MUTPB = 0.2
pop = toolbox.population(n=MU)
hof = tools.ParetoFront()
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean, axis=0)
stats.register("std", numpy.std, axis=0)
stats.register("min", numpy.min, axis=0)
stats.register("max", numpy.max, axis=0)
algorithms.eaMuPlusLambda(pop, toolbox, MU, LAMBDA, CXPB, MUTPB, NGEN, stats,
halloffame=hof)
return pop, stats, hof
示例6: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
NGEN = 40
MU = 100
LAMBDA = 200
CXPB = 0.3
MUTPB = 0.6
pop = toolbox.population(n=MU)
hof = tools.ParetoFront()
price_stats = tools.Statistics(key=lambda ind: ind.fitness.values[0])
time_stats = tools.Statistics(key=lambda ind: ind.fitness.values[1])
stats = tools.MultiStatistics(price=price_stats, time=time_stats)
stats.register("avg", numpy.mean, axis=0)
stats.register("std", numpy.std, axis=0)
stats.register("min", numpy.min, axis=0)
algorithms.eaMuPlusLambda(pop, toolbox, MU, LAMBDA, CXPB, MUTPB, NGEN,
stats, halloffame=hof)
return pop, stats, hof
示例7: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
numpy.random.seed()
# The CMA-ES One Plus Lambda algorithm takes a initialized parent as argument
parent = creator.Individual((numpy.random.rand() * 5) - 1 for _ in range(N))
parent.fitness.values = toolbox.evaluate(parent)
strategy = cma.StrategyOnePlusLambda(parent, sigma=5.0, lambda_=10)
toolbox.register("generate", strategy.generate, ind_init=creator.Individual)
toolbox.register("update", strategy.update)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaGenerateUpdate(toolbox, ngen=200, halloffame=hof, stats=stats)
示例8: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
# The cma module uses the numpy random number generator
numpy.random.seed(128)
# The CMA-ES algorithm takes a population of one individual as argument
# The centroid is set to a vector of 5.0 see http://www.lri.fr/~hansen/cmaes_inmatlab.html
# for more details about the rastrigin and other tests for CMA-ES
strategy = cma.Strategy(centroid=[5.0]*N, sigma=5.0, lambda_=20*N)
toolbox.register("generate", strategy.generate, creator.Individual)
toolbox.register("update", strategy.update)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
#logger = tools.EvolutionLogger(stats.functions.keys())
# The CMA-ES algorithm converge with good probability with those settings
algorithms.eaGenerateUpdate(toolbox, ngen=250, stats=stats, halloffame=hof)
# print "Best individual is %s, %s" % (hof[0], hof[0].fitness.values)
return hof[0].fitness.values[0]
示例9: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
random.seed(69)
with open("ant/santafe_trail.txt") as trail_file:
ant.parse_matrix(trail_file)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.5, 0.2, 40, stats, halloffame=hof)
return pop, hof, stats
示例10: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
#random.seed(318)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
mstats.register("avg", numpy.mean)
mstats.register("std", numpy.std)
mstats.register("min", numpy.min)
mstats.register("max", numpy.max)
pop, log = algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats=mstats,
halloffame=hof, verbose=True)
# print log
return pop, log, hof
示例11: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
random.seed(318)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
mstats.register("avg", numpy.mean)
mstats.register("std", numpy.std)
mstats.register("min", numpy.min)
mstats.register("max", numpy.max)
pop, log = algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats=mstats,
halloffame=hof, verbose=True)
# print log
return pop, log, hof
示例12: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
N, LAMBDA = 30, 1000
MU = int(LAMBDA/4)
strategy = EMNA(centroid=[5.0]*N, sigma=5.0, mu=MU, lambda_=LAMBDA)
toolbox = base.Toolbox()
toolbox.register("evaluate", benchmarks.sphere)
toolbox.register("generate", strategy.generate, creator.Individual)
toolbox.register("update", strategy.update)
# Numpy equality function (operators.eq) between two arrays returns the
# equality element wise, which raises an exception in the if similar()
# check of the hall of fame. Using a different equality function like
# numpy.array_equal or numpy.allclose solve this issue.
hof = tools.HallOfFame(1, similar=numpy.array_equal)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaGenerateUpdate(toolbox, ngen=150, stats=stats, halloffame=hof)
return hof[0].fitness.values[0]
示例13: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main(seed):
random.seed(seed)
NGEN = 50
#Initialize the PBIL EDA
pbil = PBIL(ndim=50, learning_rate=0.3, mut_prob=0.1,
mut_shift=0.05, lambda_=20)
toolbox.register("generate", pbil.generate, creator.Individual)
toolbox.register("update", pbil.update)
# Statistics computation
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
pop, logbook = algorithms.eaGenerateUpdate(toolbox, NGEN, stats=stats, verbose=True)
示例14: main
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def main():
random.seed(64)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40,
stats=stats, halloffame=hof, verbose=True)
return pop, log, hof
示例15: geneticAlgorithm
# 需要導入模塊: from deap import tools [as 別名]
# 或者: from deap.tools import Statistics [as 別名]
def geneticAlgorithm(X, y, n_population, n_generation):
"""
Deap global variables
Initialize variables to use eaSimple
"""
# create individual
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
# create toolbox
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat,
creator.Individual, toolbox.attr_bool, len(X.columns))
toolbox.register("population", tools.initRepeat, list,
toolbox.individual)
toolbox.register("evaluate", getFitness, X=X, y=y)
toolbox.register("mate", tools.cxOnePoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
# initialize parameters
pop = toolbox.population(n=n_population)
hof = tools.HallOfFame(n_population * n_generation)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("min", np.min)
stats.register("max", np.max)
# genetic algorithm
pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2,
ngen=n_generation, stats=stats, halloffame=hof,
verbose=True)
# return hall of fame
return hof