當前位置: 首頁>>代碼示例>>Python>>正文


Python creator.FitnessMin方法代碼示例

本文整理匯總了Python中deap.creator.FitnessMin方法的典型用法代碼示例。如果您正苦於以下問題:Python creator.FitnessMin方法的具體用法?Python creator.FitnessMin怎麽用?Python creator.FitnessMin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在deap.creator的用法示例。


在下文中一共展示了creator.FitnessMin方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_toolbox

# 需要導入模塊: from deap import creator [as 別名]
# 或者: from deap.creator import FitnessMin [as 別名]
def create_toolbox(self):
    """OptiGenAlgNsga2Deap method to create DEAP toolbox
    Parameters
    ----------
    self : OptiGenAlgNsga2Deap

    Returns
    -------
    self : OptiGenAlgNsga2Deap
        OptiGenAlgNsga2Deap with toolbox created 
    """

    # Create toolbox
    self.toolbox = base.Toolbox()

    # Create Fitness and individual
    creator.create(
        "FitnessMin", base.Fitness, weights=[-1 for _ in self.problem.design_var]
    )
    creator.create("Individual", list, typecode="d", fitness=creator.FitnessMin)

    self.toolbox.register("creator", creator.Individual)

    # Register individual and population
    self.toolbox.register(
        "individual",
        create_indiv,
        self.toolbox.creator,
        self.problem.output,
        self.problem.design_var,
    )

    self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual) 
開發者ID:Eomys,項目名稱:pyleecan,代碼行數:35,代碼來源:create_toolbox.py

示例2: create_toolbox

# 需要導入模塊: from deap import creator [as 別名]
# 或者: from deap.creator import FitnessMin [as 別名]
def create_toolbox():
    pset = gp.PrimitiveSet("MAIN", 1)
    pset.addPrimitive(operator.add, 2)
    pset.addPrimitive(operator.sub, 2)
    pset.addPrimitive(operator.mul, 2)
    pset.addPrimitive(division_operator, 2)
    pset.addPrimitive(operator.neg, 1)
    pset.addPrimitive(math.cos, 1)
    pset.addPrimitive(math.sin, 1)

    pset.addEphemeralConstant("rand101", lambda: random.randint(-1,1))

    pset.renameArguments(ARG0='x')

    creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
    creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin)

    toolbox = base.Toolbox()

    toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=2)
    toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)
    toolbox.register("compile", gp.compile, pset=pset)
    toolbox.register("evaluate", eval_func, points=[x/10. for x in range(-10,10)])
    toolbox.register("select", tools.selTournament, tournsize=3)
    toolbox.register("mate", gp.cxOnePoint)
    toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
    toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)

    toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))
    toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))

    return toolbox 
開發者ID:PacktPublishing,項目名稱:Artificial-Intelligence-with-Python,代碼行數:35,代碼來源:symbol_regression.py

示例3: main

# 需要導入模塊: from deap import creator [as 別名]
# 或者: from deap.creator import FitnessMin [as 別名]
def main(func, dim, maxfuncevals, ftarget=None):
    toolbox = base.Toolbox()
    toolbox.register("update", update)
    toolbox.register("evaluate", func)
    toolbox.decorate("evaluate", tupleize)
    
    # Create the desired optimal function value as a Fitness object
    # for later comparison
    opt = creator.FitnessMin((ftarget,))
    
    # Interval in which to initialize the optimizer
    interval = -5, 5
    sigma = (interval[1] - interval[0])/2.0
    alpha = 2.0**(1.0/dim)
    
    # Initialize best randomly and worst as a place holder
    best = creator.Individual(random.uniform(interval[0], interval[1]) for _ in range(dim))
    worst = creator.Individual([0.0] * dim)
    
    # Evaluate the first individual
    best.fitness.values = toolbox.evaluate(best)
    
    # Evolve until ftarget is reached or the number of evaluation
    # is exausted (maxfuncevals)
    for g in range(1, maxfuncevals):
        toolbox.update(worst, best, sigma)
        worst.fitness.values = toolbox.evaluate(worst)
        if best.fitness <= worst.fitness:
            # Incease mutation strength and swap the individual
            sigma = sigma * alpha
            best, worst = worst, best
        else:
            # Decrease mutation strength
            sigma = sigma * alpha**(-0.25)
        
        # Test if we reached the optimum of the function
        # Remember that ">" for fitness means better (not greater)
        if best.fitness > opt:
            return best
    
    return best 
開發者ID:DEAP,項目名稱:deap,代碼行數:43,代碼來源:bbob.py

示例4: setUp

# 需要導入模塊: from deap import creator [as 別名]
# 或者: from deap.creator import FitnessMin [as 別名]
def setUp(self):

        @binary.bin2float(0, 1023, 10)
        def evaluate(individual):
            """Simplest evaluation function."""
            return individual

        creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
        creator.create("Individual", list, fitness=creator.FitnessMin)
        self.toolbox = base.Toolbox()
        self.toolbox.register("evaluate", evaluate) 
開發者ID:DEAP,項目名稱:deap,代碼行數:13,代碼來源:test_benchmarks.py

示例5: runOptGenetic

# 需要導入模塊: from deap import creator [as 別名]
# 或者: from deap.creator import FitnessMin [as 別名]
def runOptGenetic():
    '''

    @return:
    @rtype:
    '''
    # COULDDO parametrisation

    creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
    creator.create("Individual", list, fitness=creator.FitnessMin)

    IND_SIZE = num_slots * num_evs
    POP_SIZE = 30

    toolbox = base.Toolbox()
    toolbox.register("attr_float", rd.random)  # COULDDO heuristic init
    toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=IND_SIZE)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual, n=POP_SIZE)
    toolbox.register("evaluate", evaluate)
    toolbox.decorate("evaluate", tools.DeltaPenalty(feasible, 0.0, distance))
    toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=0.5, indpb=0.5)
    toolbox.register("select", tools.selTournament, tournsize=3)

    stats = tools.Statistics(key=lambda ind: ind.fitness.values)
    stats.register("avg", np.mean)
    stats.register("std", np.std)
    stats.register("min", np.min)
    stats.register("max", np.max)

    hof = tools.HallOfFame(1)
    population = toolbox.population()

# if no of-the-shelf algorithm used...
#     fits = toolbox.map(toolbox.evaluate, population)
#     for fit, ind in zip(fits, population):
#             ind.fitness.values = fit

    population, logbook = algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.3, ngen=5, stats=stats, verbose=True, halloffame=hof)

    sorted_pop = sorted(population, key=lambda ind: ind.fitness)

    ev_schedules = np.asarray(best).reshape((num_evs, num_slots))
    schedules = np.zeros((num_households, num_slots)).tolist()

    for i in range(num_evs):
        schedules[evs[i].position] = ev_schedules[i].tolist()
        evs[i].schedule = schedules[evs[i].position]

    return schedules

# *****************************************************************************************************
# * Metaheuristics Side Functions
# *****************************************************************************************************

# UNUSED 
開發者ID:fneum,項目名稱:ev_chargingcoordination2017,代碼行數:58,代碼來源:run.py


注:本文中的deap.creator.FitnessMin方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。