當前位置: 首頁>>代碼示例>>Python>>正文


Python base.Toolbox方法代碼示例

本文整理匯總了Python中deap.base.Toolbox方法的典型用法代碼示例。如果您正苦於以下問題:Python base.Toolbox方法的具體用法?Python base.Toolbox怎麽用?Python base.Toolbox使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在deap.base的用法示例。


在下文中一共展示了base.Toolbox方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _setup_toolbox

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def _setup_toolbox(self):
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            creator.create('FitnessMulti', base.Fitness, weights=(-1.0, 1.0))
            creator.create('Individual', gp.PrimitiveTree, fitness=creator.FitnessMulti, statistics=dict)

        self._toolbox = base.Toolbox()
        self._toolbox.register('expr', self._gen_grow_safe, pset=self._pset, min_=self._min, max_=self._max)
        self._toolbox.register('individual', tools.initIterate, creator.Individual, self._toolbox.expr)
        self._toolbox.register('population', tools.initRepeat, list, self._toolbox.individual)
        self._toolbox.register('compile', self._compile_to_sklearn)
        self._toolbox.register('select', tools.selNSGA2)
        self._toolbox.register('mate', self._mate_operator)
        if self.tree_structure:
            self._toolbox.register('expr_mut', self._gen_grow_safe, min_=self._min, max_=self._max + 1)
        else:
            self._toolbox.register('expr_mut', self._gen_grow_safe, min_=self._min, max_=self._max)
        self._toolbox.register('mutate', self._random_mutation_operator) 
開發者ID:EpistasisLab,項目名稱:tpot,代碼行數:20,代碼來源:base.py

示例2: _set_toolbox

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def _set_toolbox(self, value):
        """setter of toolbox"""
        try:  # Check the type
            check_var("toolbox", value, "dict")
        except CheckTypeError:
            check_var("toolbox", value, "deap.base.Toolbox")
            # property can be set from a list to handle loads
        if (
            type(value) == dict
        ):  # Load type from saved dict {"type":type(value),"str": str(value),"serialized": serialized(value)]
            self._toolbox = loads(value["serialized"].encode("ISO-8859-2"))
        else:
            self._toolbox = value

    # DEAP toolbox
    # Type : deap.base.Toolbox 
開發者ID:Eomys,項目名稱:pyleecan,代碼行數:18,代碼來源:OptiGenAlgNsga2Deap.py

示例3: getLocaleEvolutionToolbox

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def getLocaleEvolutionToolbox(World, locale):
    toolbox = base.Toolbox()
    toolbox.register("ImmigrateHoF", immigrateHoF, locale.HallOfFame)
    toolbox.register("ImmigrateRandom", immigrateRandom, World.tools.population)
    toolbox.register("filterThreshold", filterAwayThreshold, locale)
    toolbox.register("filterTrades", filterAwayTradeCounts, locale)
    toolbox.register("filterExposure", filterAwayRoundtripDuration, locale)
    toolbox.register('ageZero', promoterz.supplement.age.ageZero)
    toolbox.register(
        'populationAges',
        promoterz.supplement.age.populationAges,
        World.conf.generation.ageBoundaries,
    )
    toolbox.register(
        'populationPD',
        promoterz.supplement.phenotypicDivergence.populationPhenotypicDivergence,
        World.tools.constructPhenotype,
    )
    toolbox.register('evaluatePopulation', evaluatePopulation)
    return toolbox 
開發者ID:Gab0,項目名稱:japonicus,代碼行數:22,代碼來源:evolutionHooks.py

示例4: getGlobalToolbox

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def getGlobalToolbox(representationModule):
    # GLOBAL FUNCTION TO GET GLOBAL TBX UNDER DEVELOPMENT;
    toolbox = base.Toolbox()
    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create(
        "Individual",
        list,
        fitness=creator.FitnessMax,
        PromoterMap=None,
        Strategy=genconf.Strategy,
    )
    toolbox.register("mate", representationModule.crossover)
    toolbox.register("mutate", representationModule.mutate)
    PromoterMap = initPromoterMap(Attributes)
    toolbox.register("newind", initInd, creator.Individual, PromoterMap)
    toolbox.register("population", tools.initRepeat, list, toolbox.newind)
    toolbox.register("constructPhenotype", representationModule.constructPhenotype)
    return toolbox 
開發者ID:Gab0,項目名稱:japonicus,代碼行數:20,代碼來源:evolutionHooks.py

示例5: main

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def main():
    N, LAMBDA = 30, 1000
    MU = int(LAMBDA/4)
    strategy = EMNA(centroid=[5.0]*N, sigma=5.0, mu=MU, lambda_=LAMBDA)
    
    toolbox = base.Toolbox()
    toolbox.register("evaluate", benchmarks.sphere)
    toolbox.register("generate", strategy.generate, creator.Individual)
    toolbox.register("update", strategy.update)
    
    # Numpy equality function (operators.eq) between two arrays returns the
    # equality element wise, which raises an exception in the if similar()
    # check of the hall of fame. Using a different equality function like
    # numpy.array_equal or numpy.allclose solve this issue.
    hof = tools.HallOfFame(1, similar=numpy.array_equal)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    algorithms.eaGenerateUpdate(toolbox, ngen=150, stats=stats, halloffame=hof)
    
    return hof[0].fitness.values[0] 
開發者ID:DEAP,項目名稱:deap,代碼行數:26,代碼來源:emna.py

示例6: init_deap_functions

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def init_deap_functions(self):

        creator.create("Fitness", base.Fitness, weights=self.weights)
        creator.create("Individual", list, fitness=creator.Fitness)

        self.toolbox = base.Toolbox()

        self.toolbox.register("individual", tools.initIterate, creator.Individual, self.generate_ind)
        self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)

        self.toolbox.register("evaluate", self.fit_func)

        if self.penalty != None:
            self.toolbox.decorate("evaluate", tools.DeltaPenality(self.feasible, self.inf_val)) 
開發者ID:ocelot-collab,項目名稱:ocelot,代碼行數:16,代碼來源:moga.py

示例7: create_toolbox

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def create_toolbox(self):
    """OptiGenAlgNsga2Deap method to create DEAP toolbox
    Parameters
    ----------
    self : OptiGenAlgNsga2Deap

    Returns
    -------
    self : OptiGenAlgNsga2Deap
        OptiGenAlgNsga2Deap with toolbox created 
    """

    # Create toolbox
    self.toolbox = base.Toolbox()

    # Create Fitness and individual
    creator.create(
        "FitnessMin", base.Fitness, weights=[-1 for _ in self.problem.design_var]
    )
    creator.create("Individual", list, typecode="d", fitness=creator.FitnessMin)

    self.toolbox.register("creator", creator.Individual)

    # Register individual and population
    self.toolbox.register(
        "individual",
        create_indiv,
        self.toolbox.creator,
        self.problem.output,
        self.problem.design_var,
    )

    self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual) 
開發者ID:Eomys,項目名稱:pyleecan,代碼行數:35,代碼來源:create_toolbox.py

示例8: geneticAlgorithm

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def geneticAlgorithm(X, y, n_population, n_generation):
    """
    Deap global variables
    Initialize variables to use eaSimple
    """
    # create individual
    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create("Individual", list, fitness=creator.FitnessMax)

    # create toolbox
    toolbox = base.Toolbox()
    toolbox.register("attr_bool", random.randint, 0, 1)
    toolbox.register("individual", tools.initRepeat,
                     creator.Individual, toolbox.attr_bool, len(X.columns))
    toolbox.register("population", tools.initRepeat, list,
                     toolbox.individual)
    toolbox.register("evaluate", getFitness, X=X, y=y)
    toolbox.register("mate", tools.cxOnePoint)
    toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
    toolbox.register("select", tools.selTournament, tournsize=3)

    # initialize parameters
    pop = toolbox.population(n=n_population)
    hof = tools.HallOfFame(n_population * n_generation)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", np.mean)
    stats.register("min", np.min)
    stats.register("max", np.max)

    # genetic algorithm
    pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2,
                                   ngen=n_generation, stats=stats, halloffame=hof,
                                   verbose=True)

    # return hall of fame
    return hof 
開發者ID:renatoosousa,項目名稱:GeneticAlgorithmForFeatureSelection,代碼行數:38,代碼來源:gaFeatureSelection.py

示例9: get_prediction_toolbox

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def get_prediction_toolbox(self, features, pset):
        toolbox = base.Toolbox()
        toolbox.register("best_individuals", afpo.find_pareto_front)
        toolbox.register("predict",
                         fast_evaluate.fast_numpy_evaluate,
                         context=pset.context,
                         predictors=features,
                         get_node_semantics=sp.get_node_semantics)
        return toolbox 
開發者ID:cfusting,項目名稱:fast-symbolic-regression,代碼行數:11,代碼來源:afpo_complexity.py

示例10: get_scoring_toolbox

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def get_scoring_toolbox(self, features, response, pset):
        toolbox = base.Toolbox()
        toolbox.register("validate_func", partial(self.error_function, response=response))
        toolbox.register("score",
                         fast_evaluate.fast_numpy_evaluate,
                         get_node_semantics=sp.get_node_semantics,
                         context=pset.context,
                         predictors=features,
                         error_function=toolbox.validate_func)
        return toolbox 
開發者ID:cfusting,項目名稱:fast-symbolic-regression,代碼行數:12,代碼來源:afpo_complexity.py

示例11: get_prediction_toolbox

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def get_prediction_toolbox(self, features, pset):
        toolbox = base.Toolbox()
        toolbox.register("best_individuals", self.get_best_individuals)
        toolbox.register("predict",
                         fast_evaluate.fast_numpy_evaluate,
                         context=pset.context,
                         predictors=features,
                         get_node_semantics=sp.get_node_semantics)
        return toolbox 
開發者ID:cfusting,項目名稱:fast-symbolic-regression,代碼行數:11,代碼來源:truncation_elite.py

示例12: register

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def register(self, alias, function, *args, **kargs):
        """
        Register a *function* in the toolbox under the name *alias*. You
        may provide default arguments that will be passed automatically when
        calling the registered function. Fixed arguments can then be overriden
        at function call time.

        :param alias: The name the operator will take in the toolbox. If the
                              alias already exists it will overwrite the the operator
                              already present.
        :param function: The function to which the alias refers.
        :param args: one or more positional arguments to pass to the registered function, optional
        :param kargs: one or more keyword arguments to pass to the registered function, optional

        .. hint::
            Under the hood lies the partial function binding. Check :func:`functools.partial` for details.

        .. note::
            If an operator needs its probability specified, like mutation and crossover operators, it can be done by
            inserting the probability into the :attr:`pbs` dictionary with the same alias. Alternatively, it can be
            given with a the special keyword argument `pb` in this method ::

                tb = Toolbox()
                tb.register('mut_uniform', mutate_uniform, ind_pb=0.02)
                tb.pbs['mut_uniform'] = 0.1

            or equivalently ::

                tb = Toolbox()
                tb.register('mut_uniform', mutate_uniform, ind_pb=0.02, pb=0.1)

            As a result, the special keyword argument `pb` is always excluded from binding into *function*.
        """
        pb = None
        if 'pb' in kargs:
            pb = kargs['pb']
            del kargs['pb']
        super().register(alias, function, *args, **kargs)
        if pb is not None:
            self.pbs[alias] = pb 
開發者ID:ShuhuaGao,項目名稱:geppy,代碼行數:42,代碼來源:toolbox.py

示例13: create_toolbox

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def create_toolbox(num_bits):
    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create("Individual", list, fitness=creator.FitnessMax)

    # Initialize the toolbox
    toolbox = base.Toolbox()

    # Generate attributes 
    toolbox.register("attr_bool", random.randint, 0, 1)

    # Initialize structures
    toolbox.register("individual", tools.initRepeat, creator.Individual, 
        toolbox.attr_bool, num_bits)

    # Define the population to be a list of individuals
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)

    # Register the evaluation operator 
    toolbox.register("evaluate", eval_func)

    # Register the crossover operator
    toolbox.register("mate", tools.cxTwoPoint)

    # Register a mutation operator
    toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)

    # Operator for selecting individuals for breeding
    toolbox.register("select", tools.selTournament, tournsize=3)
    
    return toolbox 
開發者ID:PacktPublishing,項目名稱:Artificial-Intelligence-with-Python,代碼行數:32,代碼來源:bit_counter.py

示例14: create_toolbox

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def create_toolbox():
    pset = gp.PrimitiveSet("MAIN", 1)
    pset.addPrimitive(operator.add, 2)
    pset.addPrimitive(operator.sub, 2)
    pset.addPrimitive(operator.mul, 2)
    pset.addPrimitive(division_operator, 2)
    pset.addPrimitive(operator.neg, 1)
    pset.addPrimitive(math.cos, 1)
    pset.addPrimitive(math.sin, 1)

    pset.addEphemeralConstant("rand101", lambda: random.randint(-1,1))

    pset.renameArguments(ARG0='x')

    creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
    creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin)

    toolbox = base.Toolbox()

    toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=2)
    toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)
    toolbox.register("compile", gp.compile, pset=pset)
    toolbox.register("evaluate", eval_func, points=[x/10. for x in range(-10,10)])
    toolbox.register("select", tools.selTournament, tournsize=3)
    toolbox.register("mate", gp.cxOnePoint)
    toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
    toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)

    toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))
    toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))

    return toolbox 
開發者ID:PacktPublishing,項目名稱:Artificial-Intelligence-with-Python,代碼行數:35,代碼來源:symbol_regression.py

示例15: create_toolbox

# 需要導入模塊: from deap import base [as 別名]
# 或者: from deap.base import Toolbox [as 別名]
def create_toolbox():
    global robot, pset

    pset = gp.PrimitiveSet("MAIN", 0)
    pset.addPrimitive(robot.if_target_ahead, 2)
    pset.addPrimitive(Prog().prog2, 2)
    pset.addPrimitive(Prog().prog3, 3)
    pset.addTerminal(robot.move_forward)
    pset.addTerminal(robot.turn_left)
    pset.addTerminal(robot.turn_right)

    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMax)

    toolbox = base.Toolbox()

    # Attribute generator
    toolbox.register("expr_init", gp.genFull, pset=pset, min_=1, max_=2)

    # Structure initializers
    toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr_init)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)

    toolbox.register("evaluate", eval_func)
    toolbox.register("select", tools.selTournament, tournsize=7)
    toolbox.register("mate", gp.cxOnePoint)
    toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
    toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)

    return toolbox 
開發者ID:PacktPublishing,項目名稱:Artificial-Intelligence-with-Python,代碼行數:32,代碼來源:robot.py


注:本文中的deap.base.Toolbox方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。