本文整理匯總了Python中deap.algorithms.varAnd方法的典型用法代碼示例。如果您正苦於以下問題:Python algorithms.varAnd方法的具體用法?Python algorithms.varAnd怎麽用?Python algorithms.varAnd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類deap.algorithms
的用法示例。
在下文中一共展示了algorithms.varAnd方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: eaSimpleWithElitism
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import varAnd [as 別名]
def eaSimpleWithElitism(population, toolbox, cxpb, mutpb, ngen, stats=None,
halloffame=None, verbose=__debug__):
"""This algorithm is similar to DEAP eaSimple() algorithm, with the modification that
halloffame is used to implement an elitism mechanism. The individuals contained in the
halloffame are directly injected into the next generation and are not subject to the
genetic operators of selection, crossover and mutation.
"""
logbook = tools.Logbook()
logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in population if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
if halloffame is None:
raise ValueError("halloffame parameter must not be empty!")
halloffame.update(population)
hof_size = len(halloffame.items) if halloffame.items else 0
record = stats.compile(population) if stats else {}
logbook.record(gen=0, nevals=len(invalid_ind), **record)
if verbose:
print(logbook.stream)
# Begin the generational process
for gen in range(1, ngen + 1):
# Select the next generation individuals
offspring = toolbox.select(population, len(population) - hof_size)
# Vary the pool of individuals
offspring = algorithms.varAnd(offspring, toolbox, cxpb, mutpb)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# add the best back to population:
offspring.extend(halloffame.items)
# Update the hall of fame with the generated individuals
halloffame.update(offspring)
# Replace the current population by the offspring
population[:] = offspring
# Append the current generation statistics to the logbook
record = stats.compile(population) if stats else {}
logbook.record(gen=gen, nevals=len(invalid_ind), **record)
if verbose:
print(logbook.stream)
return population, logbook
示例2: eaSimpleModified
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import varAnd [as 別名]
def eaSimpleModified(population, toolbox, cxpb, mutpb, ngen, stats=None,
halloffame=None, verbose=__debug__):
logbook = tools.Logbook()
logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in population if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
if halloffame is not None:
halloffame.update(population)
record = stats.compile(population) if stats else {}
logbook.record(gen=0, nevals=len(invalid_ind), **record)
if verbose:
print(logbook.stream)
best = []
best_ind = max(population, key=attrgetter("fitness"))
best.append(best_ind)
# Begin the generational process
for gen in range(1, ngen + 1):
# Select the next generation individuals
offspring = toolbox.select(population, len(population))
# Vary the pool of individuals
offspring = algorithms.varAnd(offspring, toolbox, cxpb, mutpb)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Save the best individual from the generation
best_ind = max(offspring, key=attrgetter("fitness"))
best.append(best_ind)
# Update the hall of fame with the generated individuals
if halloffame is not None:
halloffame.update(offspring)
# Replace the current population by the offspring
population[:] = offspring
# Append the current generation statistics to the logbook
record = stats.compile(population) if stats else {}
logbook.record(gen=gen, nevals=len(invalid_ind), **record)
if verbose:
print(logbook.stream)
return population, logbook, best
示例3: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import varAnd [as 別名]
def main(seed=None):
random.seed(seed)
# Initialize statistics object
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean, axis=0)
stats.register("std", numpy.std, axis=0)
stats.register("min", numpy.min, axis=0)
stats.register("max", numpy.max, axis=0)
logbook = tools.Logbook()
logbook.header = "gen", "evals", "std", "min", "avg", "max"
pop = toolbox.population(n=MU)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in pop if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Compile statistics about the population
record = stats.compile(pop)
logbook.record(gen=0, evals=len(invalid_ind), **record)
print(logbook.stream)
# Begin the generational process
for gen in range(1, NGEN):
offspring = algorithms.varAnd(pop, toolbox, CXPB, MUTPB)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Select the next generation population from parents and offspring
pop = toolbox.select(pop + offspring, MU)
# Compile statistics about the new population
record = stats.compile(pop)
logbook.record(gen=gen, evals=len(invalid_ind), **record)
print(logbook.stream)
return pop, logbook
示例4: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import varAnd [as 別名]
def main():
random.seed(64)
NBR_DEMES = 3
MU = 300
NGEN = 40
CXPB = 0.5
MUTPB = 0.2
MIG_RATE = 5
demes = [toolbox.population(n=MU) for _ in range(NBR_DEMES)]
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = "gen", "deme", "evals", "std", "min", "avg", "max"
for idx, deme in enumerate(demes):
for ind in deme:
ind.fitness.values = toolbox.evaluate(ind)
logbook.record(gen=0, deme=idx, evals=len(deme), **stats.compile(deme))
hof.update(deme)
print(logbook.stream)
gen = 1
while gen <= NGEN and logbook[-1]["max"] < 100.0:
for idx, deme in enumerate(demes):
deme[:] = toolbox.select(deme, len(deme))
deme[:] = algorithms.varAnd(deme, toolbox, cxpb=CXPB, mutpb=MUTPB)
invalid_ind = [ind for ind in deme if not ind.fitness.valid]
for ind in invalid_ind:
ind.fitness.values = toolbox.evaluate(ind)
logbook.record(gen=gen, deme=idx, evals=len(deme), **stats.compile(deme))
hof.update(deme)
print(logbook.stream)
if gen % MIG_RATE == 0:
toolbox.migrate(demes)
gen += 1
return demes, logbook, hof
示例5: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import varAnd [as 別名]
def main(procid, pipein, pipeout, sync, seed=None):
random.seed(seed)
toolbox.register("migrate", migPipe, k=5, pipein=pipein, pipeout=pipeout,
selection=tools.selBest, replacement=random.sample)
MU = 300
NGEN = 40
CXPB = 0.5
MUTPB = 0.2
MIG_RATE = 5
deme = toolbox.population(n=MU)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = "gen", "deme", "evals", "std", "min", "avg", "max"
for ind in deme:
ind.fitness.values = toolbox.evaluate(ind)
record = stats.compile(deme)
logbook.record(gen=0, deme=procid, evals=len(deme), **record)
hof.update(deme)
if procid == 0:
# Synchronization needed to log header on top and only once
print(logbook.stream)
sync.set()
else:
logbook.log_header = False # Never output the header
sync.wait()
print(logbook.stream)
for gen in range(1, NGEN):
deme = toolbox.select(deme, len(deme))
deme = algorithms.varAnd(deme, toolbox, cxpb=CXPB, mutpb=MUTPB)
invalid_ind = [ind for ind in deme if not ind.fitness.valid]
for ind in invalid_ind:
ind.fitness.values = toolbox.evaluate(ind)
hof.update(deme)
record = stats.compile(deme)
logbook.record(gen=gen, deme=procid, evals=len(deme), **record)
print(logbook.stream)
if gen % MIG_RATE == 0 and gen > 0:
toolbox.migrate(deme)
示例6: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import varAnd [as 別名]
def main(extended=True, verbose=True):
target_set = []
species = []
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = "gen", "species", "evals", "std", "min", "avg", "max"
ngen = 200
g = 0
schematas = nicheSchematas(TARGET_TYPE, IND_SIZE)
for i in range(TARGET_TYPE):
size = int(TARGET_SIZE/TARGET_TYPE)
target_set.extend(toolbox.target_set(schematas[i], size))
species.append(toolbox.species())
# Init with a random representative for each species
representatives = [random.choice(s) for s in species]
while g < ngen:
# Initialize a container for the next generation representatives
next_repr = [None] * len(species)
for i, s in enumerate(species):
# Vary the species individuals
s = algorithms.varAnd(s, toolbox, 0.6, 1.0)
# Get the representatives excluding the current species
r = representatives[:i] + representatives[i+1:]
for ind in s:
ind.fitness.values = toolbox.evaluate([ind] + r, target_set)
record = stats.compile(s)
logbook.record(gen=g, species=i, evals=len(s), **record)
if verbose:
print(logbook.stream)
# Select the individuals
species[i] = toolbox.select(s, len(s)) # Tournament selection
next_repr[i] = toolbox.get_best(s)[0] # Best selection
g += 1
representatives = next_repr
if extended:
for r in representatives:
print("".join(str(x) for x in r))
示例7: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import varAnd [as 別名]
def main():
random.seed(64)
hosts = htoolbox.population(n=300)
parasites = ptoolbox.population(n=300)
hof = tools.HallOfFame(1)
hstats = tools.Statistics(lambda ind: ind.fitness.values)
hstats.register("avg", numpy.mean)
hstats.register("std", numpy.std)
hstats.register("min", numpy.min)
hstats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = "gen", "evals", "std", "min", "avg", "max"
MAXGEN = 50
H_CXPB, H_MUTPB = 0.5, 0.3
P_CXPB, P_MUTPB = 0.5, 0.3
fits = htoolbox.map(htoolbox.evaluate, hosts, parasites)
for host, parasite, fit in zip(hosts, parasites, fits):
host.fitness.values = parasite.fitness.values = fit
hof.update(hosts)
record = hstats.compile(hosts)
logbook.record(gen=0, evals=len(hosts), **record)
print(logbook.stream)
for g in range(1, MAXGEN):
hosts = htoolbox.select(hosts, len(hosts))
parasites = ptoolbox.select(parasites, len(parasites))
hosts = algorithms.varAnd(hosts, htoolbox, H_CXPB, H_MUTPB)
parasites = algorithms.varAnd(parasites, ptoolbox, P_CXPB, P_MUTPB)
fits = htoolbox.map(htoolbox.evaluate, hosts, parasites)
for host, parasite, fit in zip(hosts, parasites, fits):
host.fitness.values = parasite.fitness.values = fit
hof.update(hosts)
record = hstats.compile(hosts)
logbook.record(gen=g, evals=len(hosts), **record)
print(logbook.stream)
best_network = sn.SortingNetwork(INPUTS, hof[0])
print(best_network)
print(best_network.draw())
print("%i errors" % best_network.assess())
return hosts, logbook, hof