本文整理匯總了Python中deap.algorithms.eaSimple方法的典型用法代碼示例。如果您正苦於以下問題:Python algorithms.eaSimple方法的具體用法?Python algorithms.eaSimple怎麽用?Python algorithms.eaSimple使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類deap.algorithms
的用法示例。
在下文中一共展示了algorithms.eaSimple方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def main():
random.seed(169)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.7, 0.2, 40, stats=stats,
halloffame=hof)
return pop, stats, hof
示例2: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def main():
random.seed(64)
pop = toolbox.population(n=300)
# Numpy equality function (operators.eq) between two arrays returns the
# equality element wise, which raises an exception in the if similar()
# check of the hall of fame. Using a different equality function like
# numpy.array_equal or numpy.allclose solve this issue.
hof = tools.HallOfFame(1, similar=numpy.array_equal)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40, stats=stats,
halloffame=hof)
return pop, stats, hof
示例3: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def main():
random.seed(64)
NISLES = 5
islands = [toolbox.population(n=300) for i in range(NISLES)]
# Unregister unpicklable methods before sending the toolbox.
toolbox.unregister("attr_bool")
toolbox.unregister("individual")
toolbox.unregister("population")
NGEN, FREQ = 40, 5
toolbox.register("algorithm", algorithms.eaSimple, toolbox=toolbox,
cxpb=0.5, mutpb=0.2, ngen=FREQ, verbose=False)
for i in range(0, NGEN, FREQ):
results = toolbox.map(toolbox.algorithm, islands)
islands = [pop for pop, logbook in results]
tools.migRing(islands, 15, tools.selBest)
return islands
示例4: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def main():
random.seed(69)
with open("ant/santafe_trail.txt") as trail_file:
ant.parse_matrix(trail_file)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.5, 0.2, 40, stats, halloffame=hof)
return pop, hof, stats
示例5: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def main():
#random.seed(318)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
mstats.register("avg", numpy.mean)
mstats.register("std", numpy.std)
mstats.register("min", numpy.min)
mstats.register("max", numpy.max)
pop, log = algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats=mstats,
halloffame=hof, verbose=True)
# print log
return pop, log, hof
示例6: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def main():
# create initial population (generation 0):
population = toolbox.populationCreator(n=POPULATION_SIZE)
# prepare the statistics object:
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("max", numpy.max)
stats.register("avg", numpy.mean)
# define the hall-of-fame object:
hof = tools.HallOfFame(HALL_OF_FAME_SIZE)
# perform the Genetic Algorithm flow with hof feature added:
population, logbook = algorithms.eaSimple(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION,
ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True)
# print best solution found:
best = hof.items[0]
print("-- Best Ever Individual = ", best)
print("-- Best Ever Fitness = ", best.fitness.values[0])
print("-- Knapsack Items = ")
knapsack.printItems(best)
# extract statistics:
maxFitnessValues, meanFitnessValues = logbook.select("max", "avg")
# plot statistics:
sns.set_style("whitegrid")
plt.plot(maxFitnessValues, color='red')
plt.plot(meanFitnessValues, color='green')
plt.xlabel('Generation')
plt.ylabel('Max / Average Fitness')
plt.title('Max and Average fitness over Generations')
plt.show()
開發者ID:PacktPublishing,項目名稱:Hands-On-Genetic-Algorithms-with-Python,代碼行數:38,代碼來源:01-solve-knapsack.py
示例7: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def main():
random.seed(64)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40,
stats=stats, halloffame=hof, verbose=True)
return pop, log, hof
示例8: geneticAlgorithm
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def geneticAlgorithm(X, y, n_population, n_generation):
"""
Deap global variables
Initialize variables to use eaSimple
"""
# create individual
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
# create toolbox
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat,
creator.Individual, toolbox.attr_bool, len(X.columns))
toolbox.register("population", tools.initRepeat, list,
toolbox.individual)
toolbox.register("evaluate", getFitness, X=X, y=y)
toolbox.register("mate", tools.cxOnePoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
# initialize parameters
pop = toolbox.population(n=n_population)
hof = tools.HallOfFame(n_population * n_generation)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("min", np.min)
stats.register("max", np.max)
# genetic algorithm
pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2,
ngen=n_generation, stats=stats, halloffame=hof,
verbose=True)
# return hall of fame
return hof
示例9: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def main():
# create initial population (generation 0):
population = toolbox.populationCreator(n=POPULATION_SIZE)
# prepare the statistics object:
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("min", np.min)
stats.register("avg", np.mean)
# define the hall-of-fame object:
hof = tools.HallOfFame(HALL_OF_FAME_SIZE)
# perform the Genetic Algorithm flow with hof feature added:
population, logbook = algorithms.eaSimple(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION,
ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True)
# print best individual info:
best = hof.items[0]
print("-- Best Ever Individual = ", best)
print("-- Best Ever Fitness = ", best.fitness.values[0])
# plot best solution:
plt.figure(1)
tsp.plotData(best)
# plot statistics:
minFitnessValues, meanFitnessValues = logbook.select("min", "avg")
plt.figure(2)
sns.set_style("whitegrid")
plt.plot(minFitnessValues, color='red')
plt.plot(meanFitnessValues, color='green')
plt.xlabel('Generation')
plt.ylabel('Min / Average Fitness')
plt.title('Min and Average fitness over Generations')
# show both plots:
plt.show()
開發者ID:PacktPublishing,項目名稱:Hands-On-Genetic-Algorithms-with-Python,代碼行數:40,代碼來源:02-solve-tsp-first-attempt.py
示例10: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def main():
# create initial population (generation 0):
population = toolbox.populationCreator(n=POPULATION_SIZE)
# prepare the statistics object:
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("max", numpy.max)
stats.register("avg", numpy.mean)
# perform the Genetic Algorithm flow:
population, logbook = algorithms.eaSimple(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION, ngen=MAX_GENERATIONS,
stats=stats, verbose=True)
# Genetic Algorithm is done - extract statistics:
maxFitnessValues, meanFitnessValues = logbook.select("max", "avg")
# plot statistics:
sns.set_style("whitegrid")
plt.plot(maxFitnessValues, color='red')
plt.plot(meanFitnessValues, color='green')
plt.xlabel('Generation')
plt.ylabel('Max / Average Fitness')
plt.title('Max and Average Fitness over Generations')
plt.show()
示例11: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def main():
# create initial population (generation 0):
population = toolbox.populationCreator(n=POPULATION_SIZE)
# prepare the statistics object:
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("max", numpy.max)
stats.register("avg", numpy.mean)
# define the hall-of-fame object:
hof = tools.HallOfFame(HALL_OF_FAME_SIZE)
# perform the Genetic Algorithm flow with hof feature added:
population, logbook = algorithms.eaSimple(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION,
ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True)
# print Hall of Fame info:
print("Hall of Fame Individuals = ", *hof.items, sep="\n")
print("Best Ever Individual = ", hof.items[0])
# extract statistics:
maxFitnessValues, meanFitnessValues = logbook.select("max", "avg")
# plot statistics:
sns.set_style("whitegrid")
plt.plot(maxFitnessValues, color='red')
plt.plot(meanFitnessValues, color='green')
plt.xlabel('Generation')
plt.ylabel('Max / Average Fitness')
plt.title('Max and Average Fitness over Generations')
plt.show()
開發者ID:PacktPublishing,項目名稱:Hands-On-Genetic-Algorithms-with-Python,代碼行數:35,代碼來源:03-OneMax-short-hof.py
示例12: run
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def run(num_gen,
n,
mutpb,
cxpb):
"""
Runs multiple episodes, evolving the RNN parameters using a GA
"""
history = tools.History()
# Decorate the variation operators
toolbox.decorate("mate", history.decorator)
toolbox.decorate("mutate", history.decorator)
pool = multiprocessing.Pool(processes=12)
toolbox.register("map", pool.map)
pop = toolbox.population(n=n)
history.update(pop)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("std", np.std)
stats.register("min", np.min)
stats.register("max", np.max)
pop, log = algorithms.eaSimple(pop,
toolbox,
cxpb=cxpb,
mutpb=mutpb,
ngen=num_gen,
stats=stats,
halloffame=hof,
verbose=True)
return pop, log, hof, history
# Set up the genetic algorithm to evolve the RNN parameters
示例13: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def main(seed=0):
random.seed(seed)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("Avg", numpy.mean)
stats.register("Std", numpy.std)
stats.register("Min", numpy.min)
stats.register("Max", numpy.max)
algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=100, stats=stats,
halloffame=hof, verbose=True)
return pop, stats, hof
示例14: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def main():
random.seed(318)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats, halloffame=hof)
return pop, stats, hof
示例15: main
# 需要導入模塊: from deap import algorithms [as 別名]
# 或者: from deap.algorithms import eaSimple [as 別名]
def main():
# random.seed(10)
pop = toolbox.population(n=40)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.8, 0.1, 40, stats, halloffame=hof)
return pop, stats, hof