當前位置: 首頁>>代碼示例>>Python>>正文


Python datasketch.MinHash方法代碼示例

本文整理匯總了Python中datasketch.MinHash方法的典型用法代碼示例。如果您正苦於以下問題:Python datasketch.MinHash方法的具體用法?Python datasketch.MinHash怎麽用?Python datasketch.MinHash使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在datasketch的用法示例。


在下文中一共展示了datasketch.MinHash方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: similarity

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def similarity(self, other_doc, metric='jaccard', hash_method='minhash'):
        """
        Computes similarity for two documents.
        Only minhash Jaccard similarity is implemented.

        >>> from textpipe.doc import Doc
        >>> doc1 = Doc('Sentence for computing the minhash')
        >>> doc2 = Doc('Sentence for computing the similarity')
        >>> doc1.similarity(doc2)
        0.7265625
        """
        if hash_method == 'minhash' and metric == 'jaccard':
            hash1 = MinHash(hashvalues=self.minhash)
            hash2 = MinHash(hashvalues=other_doc.minhash)
            return hash1.jaccard(hash2)

        raise NotImplementedError(f'Metric/hash method combination {metric}'
                                  f'/{hash_method} is not implemented as similarity metric') 
開發者ID:textpipe,項目名稱:textpipe,代碼行數:20,代碼來源:doc.py

示例2: priv_build_content_sim

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def priv_build_content_sim(self, threshold):
        # Build a content similarity index
        # Content_sim text relation (minhash-based)
        start_text_sig_sim = time.time()
        st = time.time()
        mh_signatures = self.store_client.get_all_mh_text_signatures()
        et = time.time()
        print("Time to extract minhash signatures from store: {0}".format(str(et - st)))
        print("!!3 " + str(et - st))

        content_index = MinHashLSH(threshold=threshold, num_perm=512)
        mh_sig_obj = []
        # Create minhash objects and index
        for nid, mh_sig in mh_signatures:
            mh_obj = MinHash(num_perm=512)
            mh_array = np.asarray(mh_sig, dtype=int)
            mh_obj.hashvalues = mh_array
            content_index.insert(nid, mh_obj)
            mh_sig_obj.append((nid, mh_obj))
        end_text_sig_sim = time.time()
        print("Total text-sig-sim (minhash): {0}".format(str(end_text_sig_sim - start_text_sig_sim)))
        print("!!4 " + str(end_text_sig_sim - start_text_sig_sim))

        self.content_sim_index = content_index 
開發者ID:mitdbg,項目名稱:aurum-datadiscovery,代碼行數:26,代碼來源:ss_api.py

示例3: test_hash

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def test_hash(self):
        m = MinHash(hashfunc=fake_hash_func)
        m.update(11)
        m.update(123)
        m.update(92)
        m.update(98)
        m.update(123218)
        m.update(32)
        lm1 = LeanMinHash(m)
        lm2 = LeanMinHash(m)
        self.assertEqual(hash(lm1), hash(lm2))
        m.update(444)
        lm3 = LeanMinHash(m)
        self.assertNotEqual(hash(lm1), hash(lm3))
        d = dict()
        d[lm1] = True
        self.assertTrue(d[lm2]) 
開發者ID:ekzhu,項目名稱:datasketch,代碼行數:19,代碼來源:test_lean_minhash.py

示例4: find_minhash

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def find_minhash(self, num_perm=128):
        """
        Compute minhash, cached.
        """
        words = self.words
        doc_hash = MinHash(num_perm=num_perm)
        for word, _ in words:
            doc_hash.update(word.encode('utf8'))
        return list(doc_hash.digest()) 
開發者ID:textpipe,項目名稱:textpipe,代碼行數:11,代碼來源:doc.py

示例5: build_content_sim_mh_text

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def build_content_sim_mh_text(network, mh_signatures):

    def connect(nid1, nid2, score):
        network.add_relation(nid1, nid2, Relation.CONTENT_SIM, score)

    # Materialize signatures for convenience
    mh_sig_obj = []

    content_index = MinHashLSH(threshold=0.7, num_perm=512)

    # Create minhash objects and index
    for nid, mh_sig in mh_signatures:
        mh_obj = MinHash(num_perm=512)
        mh_array = np.asarray(mh_sig, dtype=int)
        mh_obj.hashvalues = mh_array
        content_index.insert(nid, mh_obj)
        mh_sig_obj.append((nid, mh_obj))

    # Query objects
    for nid, mh_obj in mh_sig_obj:
        res = content_index.query(mh_obj)
        for r_nid in res:
            if r_nid != nid:
                connect(nid, r_nid, 1)

    return content_index 
開發者ID:mitdbg,項目名稱:aurum-datadiscovery,代碼行數:28,代碼來源:networkbuilder.py

示例6: compare_content_signatures

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def compare_content_signatures(self, kr_name, signatures):
        positive_matches = []
        for class_name, mh_sig in signatures:
            mh_obj = MinHash(num_perm=512)
            mh_array = np.asarray(mh_sig, dtype=int)
            mh_obj.hashvalues = mh_array
            res = self.content_sim_index.query(mh_obj)
            for r_nid in res:
                (nid, db_name, source_name, field_name) = self.network.get_info_for([r_nid])[0]
                # matching from db attr to name
                matching = ((db_name, source_name, field_name), (kr_name, class_name))
                positive_matches.append(matching)
        return positive_matches 
開發者ID:mitdbg,項目名稱:aurum-datadiscovery,代碼行數:15,代碼來源:ss_api.py

示例7: get_mh

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def get_mh(values, permutations=512):
    mh = MinHash(num_perm=permutations)
    for el in values:
        mh.update(str(el).encode('utf8'))
    return mh 
開發者ID:mitdbg,項目名稱:aurum-datadiscovery,代碼行數:7,代碼來源:benchmark_ress.py

示例8: get_min_hash

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def get_min_hash(text, too_common, num_perm=128):
    min_hash = MinHash(num_perm=num_perm)
    for shingle_h in shingle_hashes(text):
        digest = shingle_h.digest()
        if digest not in too_common:
            min_hash.update(digest)
    return min_hash 
開發者ID:TeamHG-Memex,項目名稱:MaybeDont,代碼行數:9,代碼來源:utils.py

示例9: test_minhash_from_text

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def test_minhash_from_text(self):
        """Test create minhash from text."""
        minhash = similarity.minhash_from_text(
            self.test_text, similarity.DEFAULT_PERMUTATIONS, self.delimiters)
        self.assertIsInstance(minhash, MinHash) 
開發者ID:google,項目名稱:timesketch,代碼行數:7,代碼來源:similarity_test.py

示例10: fit

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def fit(self, X):
        self._index = MinHashLSHForest(num_perm=self._n_perm, l=self._n_rep)
        for i, x in enumerate(X):
            m = MinHash(num_perm=self._n_perm)
            for e in x:
                m.update(str(e).encode('utf8'))
            self._index.add(str(i), m)
        self._index.index() 
開發者ID:erikbern,項目名稱:ann-benchmarks,代碼行數:10,代碼來源:datasketch.py

示例11: query

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def query(self, v, n):
        m = MinHash(num_perm=self._n_perm)
        for e in v:
            m.update(str(e).encode('utf8'))
        return map(int, self._index.query(m, n)) 
開發者ID:erikbern,項目名稱:ann-benchmarks,代碼行數:7,代碼來源:datasketch.py

示例12: build_index

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def build_index(self):
        """
          Builds MinHash LSH blocking indexer for single database. It processes records in batches of BATCH_SIZE.

          Args:
            None

          Returns:
            None
            Has a side effect of building MinHash LSH indexer and writing indexer to disk.
        """
        records = {}
        run_count = 0
        run_iteration = 1
        parse_dict = {}
        for k in self.value_path:
            parse_dict[k] = parse(k)
        s = time.time()
        for rid, json_data in self._file_iter:
            extracted_data = utils.extract(json_data, self.value_path, parse_dict)
            # Reset run_count when we hit BATCH_SIZE
            if run_count >= self._batch_size:
                self._index_records(records)
                msg = "Finished indexing {val} records. Time = {time}".format(val=run_count * run_iteration,
                                                                              time=(time.time() - s))
                self._logger.info('{0} {1}'.format("[minhash-lsh-blocking]", msg))

                run_iteration += 1
                records = {}
                run_count = 0

            records[rid] = set(extracted_data.values()[0])
            run_count += 1

        # Index the final remaining records
        self._index_records(records) 
開發者ID:usc-isi-i2,項目名稱:rltk,代碼行數:38,代碼來源:_minhash_lsh.py

示例13: create_minhashes_from_sets

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def create_minhashes_from_sets(sets, num_perms, hashfunc, pad_for_asym=False):
    # Generate paddings for asym.
    max_size = max(len(s) for s in sets)
    paddings = dict()
    if pad_for_asym:
        padding_sizes = sorted(list(set([max_size-len(s) for s in sets])))
        for num_perm in num_perms:
            paddings[num_perm] = dict()
            for i, padding_size in enumerate(padding_sizes):
                if i == 0:
                    prev_size = 0
                    pad = MinHash(num_perm, hashfunc=hashfunc)
                else:
                    prev_size = padding_sizes[i-1]
                    pad = paddings[num_perm][prev_size].copy()
                for w in range(prev_size, padding_size):
                    pad.update(str(w)+"_tmZZRe8DE23s")
                paddings[num_perm][padding_size] = pad
    # Generate minhash
    minhashes = dict()
    for num_perm in num_perms:
        print("Using num_perm = {}".format(num_perm))
        ms = []
        for s in sets:
            m = MinHash(num_perm, hashfunc=hashfunc)
            for word in s:
                m.update(str(word))
            if pad_for_asym:
                # Add padding to the minhash
                m.merge(paddings[num_perm][max_size-len(s)])
            ms.append(m)
            sys.stdout.write("\rMinhashed {} sets".format(len(ms)))
        sys.stdout.write("\n")
        minhashes[num_perm] = ms
    return minhashes 
開發者ID:ekzhu,項目名稱:datasketch,代碼行數:37,代碼來源:utils.py

示例14: insertion_session

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def insertion_session(self, batch_size=10000):
        """
        Create a asynchronous context manager for fast insertion in index.

        :param int batch_size: the size of chunks to use in insert_session mode (default=10000).

        :return: datasketch.experimental.aio.lsh.AsyncMinHashLSHSession

        Example:
            .. code-block:: python

                from datasketch.experimental.aio.lsh import AsyncMinHashLSH
                from datasketch import MinHash

                def chunk(it, size):
                    it = iter(it)
                    return iter(lambda: tuple(islice(it, size)), ())

                _chunked_str = chunk((random.choice(string.ascii_lowercase) for _ in range(10000)), 4)
                seq = frozenset(chain((''.join(s) for s in _chunked_str), ('aahhb', 'aahh', 'aahhc', 'aac', 'kld', 'bhg', 'kkd', 'yow', 'ppi', 'eer')))
                objs = [MinHash(16) for _ in range(len(seq))]
                for e, obj in zip(seq, objs):
                    for i in e:
                        obj.update(i.encode('utf-8'))
                data = [(e, m) for e, m in zip(seq, objs)]

                _storage_config_redis = {'type': 'aiomongo', 'mongo': {'host': 'localhost', 'port': 27017}}
                async def func():
                    async with AsyncMinHashLSH(storage_config=_storage_config_redis, threshold=0.5, num_perm=16) as lsh:
                        async with lsh.insertion_session(batch_size=1000) as session:
                            fs = (session.insert(key, minhash, check_duplication=True) for key, minhash in data)
                            await asyncio.gather(*fs)
        """
        return AsyncMinHashLSHInsertionSession(self, batch_size=batch_size) 
開發者ID:ekzhu,項目名稱:datasketch,代碼行數:36,代碼來源:lsh.py

示例15: delete_session

# 需要導入模塊: import datasketch [as 別名]
# 或者: from datasketch import MinHash [as 別名]
def delete_session(self, batch_size=10000):
        """
        Create a asynchronous context manager for fast removal of keys
        from index.

        :param int batch_size: the size of chunks to use in insert_session mode (default=10000).

        :return: datasketch.experimental.aio.lsh.AsyncMinHashLSHSession

        Example:
            .. code-block:: python

                from datasketch.experimental.aio.lsh import AsyncMinHashLSH
                from datasketch import MinHash

                def chunk(it, size):
                    it = iter(it)
                    return iter(lambda: tuple(islice(it, size)), ())

                _chunked_str = chunk((random.choice(string.ascii_lowercase) for _ in range(10000)), 4)
                seq = frozenset(chain((''.join(s) for s in _chunked_str), ('aahhb', 'aahh', 'aahhc', 'aac', 'kld', 'bhg', 'kkd', 'yow', 'ppi', 'eer')))
                objs = [MinHash(16) for _ in range(len(seq))]
                for e, obj in zip(seq, objs):
                    for i in e:
                        obj.update(i.encode('utf-8'))
                data = [(e, m) for e, m in zip(seq, objs)]

                _storage_config_redis = {'type': 'aiomongo', 'mongo': {'host': 'localhost', 'port': 27017}}
                async def func():
                    async with AsyncMinHashLSH(storage_config=_storage_config_redis, threshold=0.5, num_perm=16) as lsh:
                        async with lsh.insertion_session(batch_size=1000) as session:
                            fs = (session.insert(key, minhash, check_duplication=True) for key, minhash in data)
                            await asyncio.gather(*fs)

                        async with lsh.delete_session(batch_size=3) as session:
                            fs = (session.remove(key) for key in keys_to_remove)
                            await asyncio.gather(*fs)

        """
        return AsyncMinHashLSHDeleteSession(self, batch_size=batch_size) 
開發者ID:ekzhu,項目名稱:datasketch,代碼行數:42,代碼來源:lsh.py


注:本文中的datasketch.MinHash方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。