當前位置: 首頁>>代碼示例>>Python>>正文


Python nav_env.get_multiplexer_class方法代碼示例

本文整理匯總了Python中datasets.nav_env.get_multiplexer_class方法的典型用法代碼示例。如果您正苦於以下問題:Python nav_env.get_multiplexer_class方法的具體用法?Python nav_env.get_multiplexer_class怎麽用?Python nav_env.get_multiplexer_class使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在datasets.nav_env的用法示例。


在下文中一共展示了nav_env.get_multiplexer_class方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _compute_hardness

# 需要導入模塊: from datasets import nav_env [as 別名]
# 或者: from datasets.nav_env import get_multiplexer_class [as 別名]
def _compute_hardness():
  # Load the stanford data to compute the hardness.
  if FLAGS.type == '':
    args = sna.get_args_for_config(FLAGS.config_name+'+bench_'+FLAGS.imset)
  else:
    args = sna.get_args_for_config(FLAGS.type+'.'+FLAGS.config_name+'+bench_'+FLAGS.imset)

  args.navtask.logdir = None
  R = lambda: nav_env.get_multiplexer_class(args.navtask, 0)
  R = R()

  rng_data = [np.random.RandomState(0), np.random.RandomState(0)]

  # Sample a room.
  h_dists = []
  gt_dists = []
  for i in range(250):
    e = R.sample_env(rng_data)
    nodes = e.task.nodes

    # Initialize the agent.
    init_env_state = e.reset(rng_data)

    gt_dist_to_goal = [e.episode.dist_to_goal[0][j][s] 
                       for j, s in enumerate(e.episode.start_node_ids)]

    for j in range(args.navtask.task_params.batch_size):
      start_node_id = e.episode.start_node_ids[j]
      end_node_id =e.episode.goal_node_ids[0][j]
      h_dist = graph_utils.heuristic_fn_vec(
          nodes[[start_node_id],:], nodes[[end_node_id], :],
          n_ori=args.navtask.task_params.n_ori,
          step_size=args.navtask.task_params.step_size)[0][0]
      gt_dist = e.episode.dist_to_goal[0][j][start_node_id]
      h_dists.append(h_dist)
      gt_dists.append(gt_dist)

  h_dists = np.array(h_dists)
  gt_dists = np.array(gt_dists)
  e = R.sample_env([np.random.RandomState(0), np.random.RandomState(0)])
  input = e.get_common_data()
  orig_maps = input['orig_maps'][0,0,:,:,0]
  return h_dists, gt_dists, orig_maps 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:45,代碼來源:script_plot_trajectory.py

示例2: _train

# 需要導入模塊: from datasets import nav_env [as 別名]
# 或者: from datasets.nav_env import get_multiplexer_class [as 別名]
def _train(args):
  container_name = ""

  R = lambda: nav_env.get_multiplexer_class(args.navtask, args.solver.task)
  m = utils.Foo()
  m.tf_graph = tf.Graph()

  config = tf.ConfigProto()
  config.device_count['GPU'] = 1

  with m.tf_graph.as_default():
    with tf.device(tf.train.replica_device_setter(args.solver.ps_tasks,
                                          merge_devices=True)):
      with tf.container(container_name):
        m = args.setup_to_run(m, args, is_training=True,
                             batch_norm_is_training=True, summary_mode='train')

        train_step_kwargs = args.setup_train_step_kwargs(
            m, R(), os.path.join(args.logdir, 'train'), rng_seed=args.solver.task,
            is_chief=args.solver.task==0,
            num_steps=args.navtask.task_params.num_steps*args.navtask.task_params.num_goals, iters=1,
            train_display_interval=args.summary.display_interval,
            dagger_sample_bn_false=args.arch.dagger_sample_bn_false)

        delay_start = (args.solver.task*(args.solver.task+1))/2 * FLAGS.delay_start_iters
        logging.error('delaying start for task %d by %d steps.',
                      args.solver.task, delay_start)

        additional_args = {}
        final_loss = slim.learning.train(
            train_op=m.train_op,
            logdir=args.logdir,
            master=args.solver.master,
            is_chief=args.solver.task == 0,
            number_of_steps=args.solver.max_steps,
            train_step_fn=tf_utils.train_step_custom_online_sampling,
            train_step_kwargs=train_step_kwargs,
            global_step=m.global_step_op,
            init_op=m.init_op,
            init_fn=m.init_fn,
            sync_optimizer=m.sync_optimizer,
            saver=m.saver_op,
            startup_delay_steps=delay_start,
            summary_op=None, session_config=config, **additional_args) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:46,代碼來源:script_nav_agent_release.py

示例3: _compute_hardness

# 需要導入模塊: from datasets import nav_env [as 別名]
# 或者: from datasets.nav_env import get_multiplexer_class [as 別名]
def _compute_hardness():
  # Load the stanford data to compute the hardness.
  if FLAGS.type == '':
    args = sna.get_args_for_config(FLAGS.config_name+'+bench_'+FLAGS.imset)
  else:
    args = sna.get_args_for_config(FLAGS.type+'.'+FLAGS.config_name+'+bench_'+FLAGS.imset)

  args.navtask.logdir = None
  R = lambda: nav_env.get_multiplexer_class(args.navtask, 0)
  R = R()

  rng_data = [np.random.RandomState(0), np.random.RandomState(0)]

  # Sample a room.
  h_dists = []
  gt_dists = []
  for i in range(250):
    e = R.sample_env(rng_data)
    nodes = e.task.nodes

    # Initialize the agent.
    init_env_state = e.reset(rng_data)

    gt_dist_to_goal = [e.episode.dist_to_goal[0][j][s]
                       for j, s in enumerate(e.episode.start_node_ids)]

    for j in range(args.navtask.task_params.batch_size):
      start_node_id = e.episode.start_node_ids[j]
      end_node_id =e.episode.goal_node_ids[0][j]
      h_dist = graph_utils.heuristic_fn_vec(
          nodes[[start_node_id],:], nodes[[end_node_id], :],
          n_ori=args.navtask.task_params.n_ori,
          step_size=args.navtask.task_params.step_size)[0][0]
      gt_dist = e.episode.dist_to_goal[0][j][start_node_id]
      h_dists.append(h_dist)
      gt_dists.append(gt_dist)

  h_dists = np.array(h_dists)
  gt_dists = np.array(gt_dists)
  e = R.sample_env([np.random.RandomState(0), np.random.RandomState(0)])
  input = e.get_common_data()
  orig_maps = input['orig_maps'][0,0,:,:,0]
  return h_dists, gt_dists, orig_maps 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:45,代碼來源:script_plot_trajectory.py


注:本文中的datasets.nav_env.get_multiplexer_class方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。